2007 H2 Mathematics Paper 1 Question 8

Vectors II: Lines and Planes

Answers

(52,32,112){\left( \frac{5}{2}, \frac{3}{2}, \frac{11}{2} \right)}
78.8{78.8^\circ}
4714 units{\frac{4}{7} \sqrt{14} \textrm{ units}}

Full solutions

(i)

AB=OBOA=(313)\begin{align*} \overrightarrow{AB} &= \overrightarrow{OB} - \overrightarrow{OA} \\ &= \begin{pmatrix} - 3 \\ 1 \\ - 3 \end{pmatrix} \\ \end{align*}
Equation of line
l:r=(124)+λ(313),λRl: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} - 3 \\ 1 \\ - 3 \end{pmatrix}, \lambda \in \mathbb{R}
Equation of plane
p:r(312)=17p: \mathbf{r} \cdot \begin{pmatrix} 3 \\ - 1 \\ 2 \end{pmatrix} = 17
Let X{X} denote the point of intersection of l{l} and p,{p,}Substituting the equation of l{l} into the equation of p,{p,}
(13λ2+λ43λ)(312)=17\begin{pmatrix} 1 - 3 \lambda \\ 2 + \lambda \\ 4 - 3 \lambda \end{pmatrix} \cdot \begin{pmatrix} 3 \\ - 1 \\ 2 \end{pmatrix} = 17
3(13λ)(2+λ)+2(43λ)=173 (1 - 3 \lambda) - (2 + \lambda) + 2 (4 - 3 \lambda) = 17
916λ=1716λ=8λ=12\begin{align*} 9 - 16 \lambda &= 17 \\ - 16 \lambda &= 8 \\ \lambda &= - \frac{1}{2} \end{align*}
OX=(13(12)2+(12)43(12))=(5232112)\begin{align*} \overrightarrow{OX} &= \begin{pmatrix} 1 - 3 (- \frac{1}{2}) \\ 2 + (- \frac{1}{2}) \\ 4 - 3 (- \frac{1}{2}) \end{pmatrix} \\ &= \begin{pmatrix} \frac{5}{2} \\ \frac{3}{2} \\ \frac{11}{2} \end{pmatrix} \end{align*}
Coordinates of point of intersection: X(52,32,112)  {\displaystyle X \left( \frac{5}{2}, \frac{3}{2}, \frac{11}{2} \right) \; \blacksquare}

(ii)

Let θ{\theta} denote the angle between l{l} and p{p}
dn=dnsinθ\left|\mathbf{d} \cdot \mathbf{n}\right| = \left| \mathbf{d} \right| \left| \mathbf{n} \right| \sin \theta
(313)(312)=(313)(312)sinθ16=(19)(14)sinθ\begin{align*} \left|\begin{pmatrix} - 3 \\ 1 \\ - 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ - 1 \\ 2 \end{pmatrix} \right| &= \left| \begin{pmatrix} - 3 \\ 1 \\ - 3 \end{pmatrix} \right| \left| \begin{pmatrix} 3 \\ - 1 \\ 2 \end{pmatrix} \right| \sin \theta \\ \left|- 16 \right| &= (\sqrt{19}) (\sqrt{14}) \sin \theta \end{align*}
sinθ=16(19)(14)θ=78.8  \begin{align*} \sin \theta &= \frac{16}{(\sqrt{19})(\sqrt{14})} \\ \theta &= 78.8^\circ \; \blacksquare \end{align*}

(iii)

Let C(0,17,0){C \left( 0, - 17, 0 \right)} be a point on p{p}
CA=OAOC=(1194)\begin{align*} \overrightarrow{CA} &= \overrightarrow{OA} - \overrightarrow{OC} \\ &= \begin{pmatrix} 1 \\ 19 \\ 4 \end{pmatrix} \\ \end{align*}
Perpendicular distance from A{A} to p{p}
=CAn^=(1194)(312)(312)=319+89+1+4=814=4714 units  \begin{align*} & = \left| \overrightarrow{CA} \cdot \mathbf{\hat{n}} \right| \\ &= \frac{\left|\begin{pmatrix} 1 \\ 19 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ - 1 \\ 2 \end{pmatrix} \right|}{\left| \begin{pmatrix} 3 \\ - 1 \\ 2 \end{pmatrix}\right|} \\ &= \frac{\left|3 - 19 + 8 \right|}{\sqrt{9 + 1 + 4}} \\ &= \frac{8}{\sqrt{14}} \\ &= \frac{4}{7} \sqrt{14} \textrm{ units} \; \blacksquare \end{align*}