2007 H2 Mathematics Paper 1 Question 10

Arithmetic and Geometric Progressions (APs, GPs)

Answers

The geometric series is convergent since 1<r=23<1.{-1 < r = \frac{2}{3} < 1.}
S=3a{S_{\infty} = 3a}
{nZ:6n13}{\{ n \in \mathbb{Z} : 6 \leq n \leq 13 \}}

Full solutions

(i)

a=aa+3d=ara+5d=ar2\begin{align} &&\quad a &= a \\ &&\quad a+3d &= ar \\ &&\quad a+5d &= ar^{2} \\ \end{align}
Taking (2)(1){(2)-(1)},
3d=ara\begin{equation}\qquad 3d = ar-a \end{equation}
Taking (3)(1){(3)-(1)},
5d=ar2a\begin{equation}\qquad 5d = ar^{2}-a \end{equation}
From (4){(4)} and (5){(5)},
ara3=ar2a55ar5a=3br23a3ar25a+2a=03r25r+2=0  \begin{gather*} \frac{ar-a}{3} = \frac{ar^{2}-a}{5} \\ 5ar-5a = 3br^{2}-3a \\ 3ar^2 -5a + 2a = 0 \\ 3 r^2 - 5 r + 2 = 0 \; \blacksquare \end{gather*}

(ii)

(3r2)(r1)=0r=23   or   r=1\begin{gather*} (3 r - 2)(r - 1) = 0 \\ r = \frac{2}{3} \; \textrm{ or } \; r = 1 \end{gather*}
r=1{r=1} is rejected since d{d} is non-zero
Hence r=23{r=\frac{2}{3}}
Since 1<r=23<1,{-1 < r = \frac{2}{3} < 1,} the geometric series is convergent {\blacksquare}
S=a1r=a123=3a  \begin{align*} S_{\infty} &= \frac{a}{1-r} \\ &= \frac{a}{1-\frac{2}{3}} \\ &= 3a \; \blacksquare \end{align*}

(iii)

d=ara3=a(23)a3=19a\begin{align*} d &= \frac{ar-a}{3} \\ &= \frac{a\left(\frac{2}{3}\right)-a}{3} \\ &= - \frac{1}{9}a \end{align*}
S>4an2(2a+(n1)d)>4an2(2a+(n1)(19a))>4a18anan2+an>72a\begin{gather*} S > 4a \\ \frac{n}{2} \Big( 2a + \left( n - 1 \right) d \Big) > 4a \\ \frac{n}{2}\Big(2a + (n-1)\left(- \frac{1}{9}a\right) \Big) > 4a \\ 18an - an^2 + an > 72a \\ \end{gather*}
Since a>0,{a>0,}
n219n+72<05.2280<n<13.772\begin{gather*} n^2 - 19 n + 72 < 0 \\ 5.2280 < n < 13.772 \end{gather*}
Set of possible values of n:{n:}
{nZ:6n13}  \{ n \in \mathbb{Z} : 6 \leq n \leq 13 \} \; \blacksquare