2007 H2 Mathematics Paper 2 Question 2
Sigma Notation
Answers
Out of syllabus
1−(N+1)21 As
N→∞, (N+1)21→0 so
1−(N+1)21→1
Hence the series is
convergent
Sum to infinity
=1 1−N21 Full solutions
(i)
Out of syllabus
(ii)
n=1∑Nn2(n+1)22n+1=n=1∑N(un−un+1)=++++++u1u2u3uN−2uN−1uN−−−⋯−−−u2u3u4uN−1uNuN+1=u1−uN+1=1−(N+1)21■ (iii)
As
N→∞, (N+1)21→0 so
n=1∑Nn2(n+1)22n+1=1−(N+1)21→1 Hence the series is
convergent ■Sum to infinity=n=1∑∞n2(n+1)22n+1=1■ (iv)
Replacing
n with
n+1,n=2∑Nn2(n−1)22n−1=n=1∑N−1(n+1)2(n+1−1)22(n+1)−1=n=1∑N−1(n+1)2n22n+1=1−(N−1+1)21=1−N21■