2007 H2 Mathematics Paper 1 Question 2

Functions

Answers

fg{fg} does not exist since Rg⊈Df{R_g \not \subseteq D_f}
gf:x1(x3)2for xR,x3{gf: x \mapsto \frac{1}{(x-3)^2} \quad} \allowbreak {\textrm{for } x \in \mathbb{R}, x \neq 3}
f1(x)=3+1x{f^{-1}(x) = 3 + \frac{1}{x}}
Df1=(,0)(0,){D_{f^{-1}} = (-\infty, 0) \cup (0, \infty) }

Full solutions

(i)

Rg=[0,)Df=(,3)(3,)\begin{align*} R_g &= [0, \infty) \\ D_f &= (-\infty, 3) \cup (3, \infty) \end{align*}
Hence the composite function fg{fg} does not exists since Rg⊈Df  {R_g \not \subseteq D_f \; \blacksquare}
gf(x)=g(1x3)=(1x3)2=1(x3)2\begin{align*} gf(x) &= g\left( \frac{1}{x-3} \right) \\ &= \left( \frac{1}{x-3} \right)^2 \\ &= \frac{1}{(x-3)^2} \end{align*}
gf:x1(x3)2for xR,x3  gf: x \mapsto \frac{1}{(x-3)^2} \quad \textrm{for } x \in \mathbb{R}, x \neq 3 \; \blacksquare

(ii)

y=1x3x3=1yx=3+1y\begin{gather*} y = \frac{1}{x-3} \\ x - 3 = \frac{1}{y} \\ x = 3 + \frac{1}{y} \end{gather*}
f1(x)=3+1x  f^{-1}(x) = 3 + \frac{1}{x} \; \blacksquare
Df1=Rf=(,0)(0,)  \begin{align*} D_{f^{-1}} &= R_f \\ &= (-\infty, 0) \cup (0, \infty) \; \blacksquare \end{align*}