Math Repository
about
topic
al
year
ly
Yearly
2007
P1 Q2
Topical
Functions
07 P1 Q2
2007 H2 Mathematics Paper 1 Question 2
Functions
Answers
(i)
f
g
{fg}
f
g
does not exist since
R
g
⊈
D
f
{R_g \not \subseteq D_f}
R
g
⊆
D
f
g
f
:
x
↦
1
(
x
−
3
)
2
for
x
∈
R
,
x
≠
3
{gf: x \mapsto \frac{1}{(x-3)^2} \quad} \allowbreak {\textrm{for } x \in \mathbb{R}, x \neq 3}
g
f
:
x
↦
(
x
−
3
)
2
1
for
x
∈
R
,
x
=
3
(ii)
f
−
1
(
x
)
=
3
+
1
x
{f^{-1}(x) = 3 + \frac{1}{x}}
f
−
1
(
x
)
=
3
+
x
1
D
f
−
1
=
(
−
∞
,
0
)
∪
(
0
,
∞
)
{D_{f^{-1}} = (-\infty, 0) \cup (0, \infty) }
D
f
−
1
=
(
−
∞
,
0
)
∪
(
0
,
∞
)
Full solutions
(i)
R
g
=
[
0
,
∞
)
D
f
=
(
−
∞
,
3
)
∪
(
3
,
∞
)
\begin{align*} R_g &= [0, \infty) \\ D_f &= (-\infty, 3) \cup (3, \infty) \end{align*}
R
g
D
f
=
[
0
,
∞
)
=
(
−
∞
,
3
)
∪
(
3
,
∞
)
Hence the composite function
f
g
{fg}
f
g
does not exists since
R
g
⊈
D
f
■
{R_g \not \subseteq D_f \; \blacksquare}
R
g
⊆
D
f
■
g
f
(
x
)
=
g
(
1
x
−
3
)
=
(
1
x
−
3
)
2
=
1
(
x
−
3
)
2
\begin{align*} gf(x) &= g\left( \frac{1}{x-3} \right) \\ &= \left( \frac{1}{x-3} \right)^2 \\ &= \frac{1}{(x-3)^2} \end{align*}
g
f
(
x
)
=
g
(
x
−
3
1
)
=
(
x
−
3
1
)
2
=
(
x
−
3
)
2
1
g
f
:
x
↦
1
(
x
−
3
)
2
for
x
∈
R
,
x
≠
3
■
gf: x \mapsto \frac{1}{(x-3)^2} \quad \textrm{for } x \in \mathbb{R}, x \neq 3 \; \blacksquare
g
f
:
x
↦
(
x
−
3
)
2
1
for
x
∈
R
,
x
=
3
■
(ii)
y
=
1
x
−
3
x
−
3
=
1
y
x
=
3
+
1
y
\begin{gather*} y = \frac{1}{x-3} \\ x - 3 = \frac{1}{y} \\ x = 3 + \frac{1}{y} \end{gather*}
y
=
x
−
3
1
x
−
3
=
y
1
x
=
3
+
y
1
f
−
1
(
x
)
=
3
+
1
x
■
f^{-1}(x) = 3 + \frac{1}{x} \; \blacksquare
f
−
1
(
x
)
=
3
+
x
1
■
D
f
−
1
=
R
f
=
(
−
∞
,
0
)
∪
(
0
,
∞
)
■
\begin{align*} D_{f^{-1}} &= R_f \\ &= (-\infty, 0) \cup (0, \infty) \; \blacksquare \end{align*}
D
f
−
1
=
R
f
=
(
−
∞
,
0
)
∪
(
0
,
∞
)
■
Back to top ▲