2019 H2 Mathematics Paper 1 Question 8

Arithmetic and Geometric Progressions (APs, GPs)

Answers

k=13{k=13}
r=1,fR{r=-1, f\in\mathbb{R}}
Sn={f if n odd0 if n even{S_n = \begin{cases}f \quad &\textrm{ if } n \textrm{ odd} \\ 0 \quad &\textrm{ if } n \textrm{ even} \end{cases}}
u11=63{u_{11} = 63}

Full solutions

(a)

uk,GP=S64,APark1=n2(2a+(n1)d)a2k1=642(2a+63(2a))2k1=40962k1=212k=13  \begin{gather*} u_{k,\textrm{GP}} = S_{64,\textrm{AP}} \\ ar^{k-1} = \frac{n}{2} \Big( 2a + \left( n - 1 \right) d \Big) \\ a 2^{k-1} = \frac{64}{2} \left( 2a + 63(2a) \right) \\ 2^{k-1} = 4096 \\ 2^{k-1} = 2^{12} \\ k = 13 \; \blacksquare \end{gather*}

(b)

f+fr+fr2+fr3=0f(1+r+r2+r3)=0\begin{gather*} f + fr + fr^2 + fr^3 = 0 \\ f(1+r+r^2+r^3) = 0 \end{gather*}
Since f0,{f\neq 0,}
1+r+r2+r3=0r=1  \begin{gather*} 1+r+r^2+r^3 = 0 \\ r = -1 \; \blacksquare \end{gather*}
f{f} can take any real value (except 0,{0,}) as specified in the question.
fR,f0  f \in \mathbb{R}, f \neq 0 \; \blacksquare
Hence the sequence is
f,f,f,f,f, -f, f, -f, \ldots
Sn={f if n odd0 if n even  S_n = \begin{cases}f \quad &\textrm{ if } n \textrm{ odd} \\ 0 \quad &\textrm{ if } n \textrm{ even} \end{cases} \; \blacksquare

(c)

a+(a+d)+(a+2d)+(a+3d)=144a+6d=14\begin{gather*} a + (a+d) + (a+2d) + (a+3d) = 14 \\ 4a + 6d = 14 \end{gather*}
2a+3d=7\begin{equation} \qquad 2a + 3d = 7 \end{equation}
a(a+d)(a+2d)(a+3d)=0\begin{equation} \qquad a(a+d)(a+2d)(a+3d) = 0 \end{equation}
From (2),{(2), } a=0{a=0} (NA since a{a} is negative)
   ora=d   ora=2d   ora=3d\begin{align} &&\; \textrm{ or} \qquad a&=-d \\ &&\; \textrm{ or} \qquad a&=-2d \\ &&\; \textrm{ or} \qquad a&=-3d \\ \end{align}
Solving (1){(1)} and (4),{(4),}
a=14,  d=7a=14, \; d=- 7
Solving (1){(1)} and (5),{(5),}
a=7,  d=73a=7, \; d=- \frac{7}{3}
Both these cases are rejected since a{a} is negative
Solving (1){(1)} and (3),{(3),}
a=7,  d=7a=- 7, \; d=7
u11=a+(n1)d=7+(111)7=63  \begin{align*} u_{11} &= a + \left( n - 1 \right) d \\ &= - 7 + \left( 11 - 1 \right) 7 \\ &= 63 \; \blacksquare \end{align*}