2019 H2 Mathematics Paper 2 Question 5

Vectors I: Basics, Dot and Cross Products

Answers

OX=54a+b{\overrightarrow{OX}=\frac{5}{4} \mathbf{a} + \mathbf{b}}
OY=103a+83b{\overrightarrow{OY} = \frac{10}{3} \mathbf{a} + \frac{8}{3} \mathbf{b}}
OX:OY=3:8{OX:OY = 3:8}

Full solutions

(i)

BD=ODOB=b+5ab=5a\begin{align*} \overrightarrow{BD} &= \overrightarrow{OD} - \overrightarrow{OB} \\ &= \mathbf{b} + 5 \mathbf{a} - \mathbf{b} \\ &= 5 \mathbf{a} \end{align*}
Equation of line BD:{BD:}
r=OB+λBD,  λR=b+λ(5a)lBD:r=5λa+b\begin{align*} \mathbf{r} &= \overrightarrow{OB} + \lambda \overrightarrow{BD}, \; \lambda \in \mathbb{R} \\ &= \mathbf{b} + \lambda (5 \mathbf{a}) \\ l_{BD}: \mathbf{r} &= 5 \lambda \mathbf{a} + \mathbf{b} \end{align*}
AC=OCOA=2a+4ba=a+4b\begin{align*} \overrightarrow{AC} &= \overrightarrow{OC} - \overrightarrow{OA} \\ &= 2 \mathbf{a} + 4 \mathbf{b} - \mathbf{a} \\ &= \mathbf{a} + 4 \mathbf{b} \end{align*}
Equation of line AC:{AC:}
r=OA+μAC,  μR=a+μ(a+4b)lAC:r=(1+μ)a+4μb  \begin{align*} \mathbf{r} &= \overrightarrow{OA} + \mu \overrightarrow{AC}, \; \mu \in \mathbb{R} \\ &= \mathbf{a} + \mu (\mathbf{a} + 4 \mathbf{b}) \\ l_{AC}: \mathbf{r} &= (1+\mu)\mathbf{a} + 4\mu\mathbf{b} \; \blacksquare \end{align*}
When BD{BD} and AC{AC} meet at X{X},
5λa+b=(1+μ)a+4μb5 \lambda \mathbf{a} + \mathbf{b} = (1+\mu)\mathbf{a} + 4\mu\mathbf{b}
Comparing b{\mathbf{b}},
1=4μμ=14\begin{align*} 1 &= 4\mu \\ \mu &= \frac{1}{4} \end{align*}
OX=(1+14)a+4(14)b=54a+b  \begin{align*} \overrightarrow{OX} &= \left(1+\frac{1}{4}\right)\mathbf{a} + 4\left(\frac{1}{4}\right)\mathbf{b} \\ &= \frac{5}{4} \mathbf{a} + \mathbf{b} \; \blacksquare \end{align*}

(ii)

CD=ODOC=b+5a2a+4b=3a3b\begin{align*} \overrightarrow{CD} &= \overrightarrow{OD} - \overrightarrow{OC} \\ &= \mathbf{b} + 5 \mathbf{a} - 2 \mathbf{a} + 4 \mathbf{b} \\ &= 3 \mathbf{a} - 3 \mathbf{b} \end{align*}
Equation of line CD:{CD:}
r=OC+νCD,  νR=2a+4b+ν(3a3b)lCD:r=(2+3ν)a+(43ν)b\begin{align*} \mathbf{r} &= \overrightarrow{OC} + \nu \overrightarrow{CD}, \; \nu \in \mathbb{R} \\ &= 2 \mathbf{a} + 4 \mathbf{b} + \nu (3 \mathbf{a} - 3 \mathbf{b}) \\ l_{CD}: \mathbf{r} &= (2+3\nu)\mathbf{a} + (4-3\nu) \mathbf{b} \end{align*}
Since Y{Y} lies on CD,{CD,}
OY=(2+3ν)a+(43ν)b\overrightarrow{OY} = (2+3\nu)\mathbf{a} + (4-3\nu) \mathbf{b}
Since O,X{O,X} and Y{Y} are collinear,
OY=kOX(2+3ν)a+(43ν)b=54ka+kb\begin{gather*} \overrightarrow{OY} = k \overrightarrow{OX} \\ (2+3\nu)\mathbf{a} + (4-3\nu) \mathbf{b} = \frac{5}{4}k\mathbf{a} + k\mathbf{b} \\ \end{gather*}
Comparing,
2+3ν=54k43ν=k\begin{align} && \quad 2 + 3 \nu &= \frac{5}{4}k \\ && \quad 4 - 3 \nu &= k \end{align}
Solving with a GC,
ν=49,  k=83\nu = \frac{4}{9}, \; k = \frac{8}{3}
OY=103a+83b  \overrightarrow{OY} = \frac{10}{3} \mathbf{a} + \frac{8}{3} \mathbf{b} \; \blacksquare
OX:OY=1:83=3:8  \begin{align*} \overrightarrow{OX} : \overrightarrow{OY} &= 1 : \frac{8}{3} \\ &= 3 : 8 \; \blacksquare \end{align*}