2019 H2 Mathematics Paper 1 Question 5

Functions

Answers

f1(x)=12ln(x+4){f^{-1}(x) = \frac{1}{2}\ln(x+4)}
Df1=(4,){D_{f^{-1}} = (-4, \infty)}
x=ln32{x=\ln 3 - 2}

Full solutions

(i)

y=e2x4e2x=y+42x=ln(y+4)x=12ln(y+4)\begin{gather*} y = \mathrm{e}^{2x}- 4 \\ \mathrm{e}^{2x} = y + 4 \\ 2x = \ln(y+4) \\ x = \frac{1}{2} \ln (y+4) \end{gather*}
f1(x)=12ln(x+4)  f^{-1}(x) = \frac{1}{2}\ln(x+4) \; \blacksquare
Df1=Rf=(4,)  \begin{align*} D_{f^{-1}} &= R_f \\ &= (-4, \infty) \; \blacksquare \end{align*}

(ii)

fg(x)=5f(x+2)=5x+2=f1(5)x+2=12ln(5+4)x=12ln92=ln32  \begin{align*} fg(x) &= 5 \\ f(x+2) &= 5 \\ x+2 &= f^{-1}(5) \\ x + 2 &= \frac{1}{2} \ln(5+4) \\ x &= \frac{1}{2} \ln9 - 2 \\ &= \ln 3 - 2 \; \blacksquare \end{align*}