2019 H2 Mathematics Paper 2 Question 7

The Binomial Distribution

Answers

The probability of a mug is faulty is the same for each mug
Whether a mug is faulty is independent of any other mug
0.102{0.102}
0.991{0.991}
45p2(1p)8{45 p^2 (1-p)^{8}}
0.0689{0.0689}

Full solutions

(i)

The probability of a mug is faulty is the same for each mug   {\; \blacksquare}
Whether a mug is faulty is independent of any other mug   {\; \blacksquare}

(ii)

FB(50,0.08)F \sim \textrm{B}\left(50, 0.08\right)
P(F7)=1P(F6)=0.10187=0.102 (3 sf)  \begin{align*} \mathrm{P}(F \geq 7) &= 1 - \mathrm{P}(F\leq 6) \\ &= 0.10187 \\ & = 0.102 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(iii)

Let D{D} denote the r.v. of the number of days in which at least 7 faulty mugs were found out of of 5{5} days
DB(5,0.10187)D \sim \textrm{B}\left(5, 0.10187\right)
P(D2)=0.991  \begin{align*} \mathrm{P}(D \leq 2) &= 0.991 \; \blacksquare \end{align*}

(iv)

Let S{S} denote the r.v. of the number of faulty saucers out of a random sample 10{10}
SB(10,p)S \sim \textrm{B}\left(10, p\right)
P(S=2)=(102)p2(1p)102=45p2(1p)8  \begin{align*} & \textrm{P}(S=2) \\ & = {10 \choose 2} p^2 (1-p)^{10-2} \\ & = 45 p^2 (1-p)^{8} \; \blacksquare \end{align*}

(v)

Let X{X} and Y{Y} denote the r.v.s of the number of faulty mugs and faulty saucers respectively out of of 2{2}
XB(2,0.08)YB(2,p)\begin{align*} X &\sim \textrm{B}(2, 0.08) \\ Y &\sim \textrm{B}(2, p) \\ \end{align*}
P(at most 1 faulty items)=P(Y=0)P(X1)+P(Y=1)P(X=0)\begin{align*} & \textrm{P}(\textrm{at most } 1 \textrm{ faulty items}) \\ & = \textrm{P}(Y=0) \cdot \textrm{P}(X\leq 1) + \textrm{P}(Y=1) \cdot \textrm{P}(X = 0) \\ \end{align*}
0.9936(1p)2+2p(1p)(0.8464)=0.970.9936(1p)2+1.6928p(1p)0.97=0  \begin{gather*} 0.9936(1-p)^2 + 2p(1-p) \left( 0.8464 \right) = 0.97 \\ 0.9936(1-p)^2 + 1.6928 p(1-p) - 0.97 = 0 \; \blacksquare \end{gather*}
Since 0<p<1,{0 < p < 1,} solving with a GC,
p=0.0689 (3 sf)  p=0.0689 \textrm{ (3 sf)} \; \blacksquare