Math Repository
about
topic
al
year
ly
Yearly
2011
P2 Q11
Topical
P&C
11 P2 Q11
2011 H2 Mathematics Paper 2 Question 11
Permutations and Combinations (P&C)
Answers
(i)
816
8671
≈
0.0941
{\frac{816}{8671}\approx0.0941}
8671
816
≈
0.0941
(ii)
r
=
6
{r=6}
r
=
6
Full solutions
(i)
P
(
R
=
4
)
=
(
18
4
)
(
12
6
)
(
30
10
)
=
816
8671
■
\begin{align*} \textrm{P}\left(R=4\right) &= \frac{{18 \choose 4}{12 \choose 6}}{{30 \choose 10}} \\ &= \frac{816}{8671} \; \blacksquare \end{align*}
P
(
R
=
4
)
=
(
10
30
)
(
4
18
)
(
6
12
)
=
8671
816
■
(ii)
P
(
R
=
r
)
>
P
(
R
=
r
+
1
)
(
18
r
)
(
12
10
−
r
)
(
30
10
)
>
(
18
r
+
1
)
(
12
10
−
(
r
+
1
)
)
(
30
10
)
(
18
r
)
(
12
10
−
r
)
>
(
18
r
+
1
)
(
12
9
−
r
)
\begin{align*} \textrm{P}\left(R=r\right) &> \textrm{P}\left(R=r+1\right) \\ \frac{{18\choose r}{12 \choose 10-r}}{30 \choose 10} &> \frac{{18\choose r+1}{12 \choose 10-(r+1)}}{30 \choose 10} \\ {18\choose r}{12 \choose 10-r} &> {18\choose r+1}{12 \choose 9-r} \\ \end{align*}
P
(
R
=
r
)
(
10
30
)
(
r
18
)
(
10
−
r
12
)
(
r
18
)
(
10
−
r
12
)
>
P
(
R
=
r
+
1
)
>
(
10
30
)
(
r
+
1
18
)
(
10
−
(
r
+
1
)
12
)
>
(
r
+
1
18
)
(
9
−
r
12
)
18
!
r
!
(
18
−
r
)
!
⋅
12
!
(
10
−
r
)
!
(
r
+
2
)
!
>
18
!
(
r
+
1
)
!
(
17
−
r
)
!
⋅
12
!
(
9
−
r
)
!
(
r
+
3
)
!
(
r
+
1
)
!
(
17
−
r
)
!
(
9
−
r
)
!
(
r
+
3
)
!
>
r
!
(
18
−
r
)
!
(
10
−
r
)
!
(
r
+
2
)
!
■
\begin{align*} \frac{18!}{r!(18-r)!}\cdot\frac{12!}{(10-r)!(r+2)!} &> \frac{18!}{(r+1)!(17-r)!}\cdot\frac{12!}{(9-r)!(r+3)!} \\ (r+1)!(17-r)!(9-r)!(r+3)! &> r!(18-r)!(10-r)!(r+2)! \; \blacksquare \end{align*}
r
!
(
18
−
r
)!
18
!
⋅
(
10
−
r
)!
(
r
+
2
)!
12
!
(
r
+
1
)!
(
17
−
r
)!
(
9
−
r
)!
(
r
+
3
)!
>
(
r
+
1
)!
(
17
−
r
)!
18
!
⋅
(
9
−
r
)!
(
r
+
3
)!
12
!
>
r
!
(
18
−
r
)!
(
10
−
r
)!
(
r
+
2
)!
■
(
r
+
1
)
!
r
!
(
r
+
3
)
!
(
r
+
2
)
!
>
(
18
−
r
)
!
(
17
−
r
)
!
(
10
−
r
)
!
(
9
−
r
)
!
(
r
+
1
)
(
r
+
3
)
>
(
18
−
r
)
(
10
−
r
)
r
2
+
4
r
+
3
>
180
−
28
r
+
r
2
\begin{align*} \frac{(r+1)!}{r!} \frac{(r+3)!}{(r+2)!} &> \frac{(18-r)!}{(17-r)!}\frac{(10-r)!}{(9-r)!} \\ (r + 1)(r + 3) &> (18 - r)(10 - r) \\ r^2 + 4 r + 3 &> 180 - 28 r + r^2 \\ \end{align*}
r
!
(
r
+
1
)!
(
r
+
2
)!
(
r
+
3
)!
(
r
+
1
)
(
r
+
3
)
r
2
+
4
r
+
3
>
(
17
−
r
)!
(
18
−
r
)!
(
9
−
r
)!
(
10
−
r
)!
>
(
18
−
r
)
(
10
−
r
)
>
180
−
28
r
+
r
2
32
r
>
177
r
>
177
32
r
>
5.5313
\begin{align*} 32r &> 177 \\ r &> \frac{177}{32} \\ r &> 5.5313 \\ \end{align*}
32
r
r
r
>
177
>
32
177
>
5.5313
Hence
r
=
6
■
{r=6 \; \blacksquare}
r
=
6
■
Back to top ▲