2011 H2 Mathematics Paper 2 Question 10

Hypothesis Testing

Answers

H0:μ=38{\textrm{H}_0: \mu = 38}
H1:μ<38{\textrm{H}_1: \mu < 38}
{tR+:t<36.8}{\{ \overline{t} \in \mathbb{R}^+: \overline{t} < 36.8 \}}
{nZ+:n83}{\{ n \in \mathbb{Z}^+: n \leq 83 \}}

Full solutions

(i)

Let μ{\mu} denote the population mean time in minutes for an employee to install an electronic component, and H0{\mathrm{H}_0} and H1{\mathrm{H}_1} be the null and alternative hypothesis respectively.
H0:μ=38{\textrm{H}_0: \mu = 38}
H1:μ<38  {\textrm{H}_1: \mu < 38 \; \blacksquare}

(ii)

Under H0,{\mathrm{H}_0,}
Z=TμσnN(0,1)Z= \frac{\overline{T} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)
For the test to reject the null hypothesis,
t38550<1.6449t<36.8 (3 sf)\begin{align*} \frac{\overline{t}-38}{\frac{5}{\sqrt{50}}} &< -1.6449 \\ \overline{t} &< 36.8 \textrm{ (3 sf)} \end{align*}
Set of values of t:{\overline{t}:}
{tR+:t<36.8}  \{ \overline{t} \in \mathbb{R}^+: \overline{t} < 36.8 \} \; \blacksquare

(iii)

For the test to not reject the null hypothesis,
37.1385n>1.64490.9>1.6449(5n)0.9n>1.6449(5)n<9.1381n<83.504\begin{align*} \frac{37.1-38}{\frac{5}{\sqrt{n}}} &> -1.6449 \\ -0.9 &> -1.6449 \left( \frac{5}{\sqrt{n}} \right) \\ -0.9 \sqrt{n} &> -1.6449 \left( 5 \right) \\ \sqrt{n} &< 9.1381 \\ n &< 83.504 \end{align*}
Set of values of n:{n:}
{nZ+:n83}  \{ n \in \mathbb{Z}^+: n \leq 83 \} \; \blacksquare