2011 H2 Mathematics Paper 1 Question 2

Equations and Inequalities

Answers

a=0.215,  {a=0.215,\;}b=0.490,  {b=-0.490,\;}c=3.281{c=3.281}
{xR:x>1.14}{\{ x \in \mathbb{R}: x > 1.14 \}}

Full solutions

(i)

(1.5)2a1.5b+c=4.52.12a+2.1b+c=3.23.42a+3.4b+c=4.1\begin{align} && \quad (-1.5)^2 a -1.5 b + c &= 4.5 \\ && \quad 2.1^2 a + 2.1 b + c &= 3.2 \\ && \quad 3.4^2 a + 3.4 b + c &= 4.1 \\ \end{align}
Solving (1),(2){(1), (2)} and (3){(3)} with a GC,
a=0.215 (3 dp)  b=0.490 (3 dp)  c=3.281 (3 dp)  \begin{align*} a&=0.215 \textrm{ (3 dp)} \; \blacksquare \\ b&=-0.490 \textrm{ (3 dp)} \; \blacksquare \\ c&=3.281 \textrm{ (3 dp)} \; \blacksquare \end{align*}

(ii)

f(x)=0.215x20.490x+3.281f(x)=0.430x0.490\begin{gather*} f(x) = 0.215x^2 -0.490x + 3.281 \\ f'(x) = 0.430x -0.490 \\ \end{gather*}
For f(x){f(x)} to be increasing,
f(x)>00.430x0.490>0x>1.14 (3 sf)\begin{gather*} f'(x) > 0 \\ 0.430x -0.490 > 0 \\ x > 1.14 \textrm{ (3 sf)} \end{gather*}
Set of values of x{x} for which f(x){f(x)} is an increasing function:
{xR:x>1.14}  \{ x \in \mathbb{R}: x > 1.14 \} \; \blacksquare