2011 H2 Mathematics Paper 1 Question 7

Vectors I: Basics, Dot and Cross Products

Answers

OM=16a+310b{\overrightarrow{OM}=\frac{1}{6} \mathbf{a} + \frac{3}{10} \mathbf{b}}
Area of OMP{\triangle OMP}=120a×b{=\frac{1}{20} \left| \mathbf{a} \times \mathbf{b} \right|}
k=120{k=\frac{1}{20}}
(iia)
p=17{p=\frac{1}{7}}
(iib)
ab{\left|\mathbf{a}\cdot\mathbf{b}\right|} is the length of projection of b{\mathbf{b}} on a{\mathbf{a}}
(iic)
17(978){\displaystyle \frac{1}{7} \begin{pmatrix} 9 \\ 7 \\ 8 \end{pmatrix}}

Full solutions

(i)

Since OP:PA=1:2,{OP:PA = 1:2,}
OP=13a\overrightarrow{OP} = \frac{1}{3}\mathbf{a}
Since OQ:QB=3:2,{OQ:QB = 3:2,}
OQ=35b\overrightarrow{OQ} = \frac{3}{5}\mathbf{b}
By ratio theorem,
OM=OP+OQ2=13a+35b2=16a+310b  \begin{align*} \overrightarrow{OM} &= \frac{\overrightarrow{OP}+\overrightarrow{OQ}}{2} \\ &= \frac{\frac{1}{3}\mathbf{a}+\frac{3}{5}\mathbf{b}}{2} \\ &= \frac{1}{6} \mathbf{a} + \frac{3}{10} \mathbf{b} \; \blacksquare \end{align*}
Area of OMP=12OP×OM=12(16a+310b)×13a=12118a×a+110b×a=120+110b×a=12110a×b=120a×b  \begin{align*} & \textrm{Area of } \triangle OMP \\ &= \frac{1}{2} \left| \overrightarrow{OP} \times \overrightarrow{OM} \right| \\ &= \frac{1}{2} \left| \left(\frac{1}{6} \mathbf{a} + \frac{3}{10} \mathbf{b}\right) \times \frac{1}{3} \mathbf{a} \right| \\ &= \frac{1}{2} \left| \frac{1}{18} \mathbf{a} \times \mathbf{a} + \frac{1}{10} \mathbf{b} \times \mathbf{a} \right| \\ &= \frac{1}{2} \left| \mathbf{0} + \frac{1}{10} \mathbf{b} \times \mathbf{a} \right| \\ &= \frac{1}{2} \left| - \frac{1}{10} \mathbf{a} \times \mathbf{b} \right| \\ &= \frac{1}{20} \left| \mathbf{a} \times \mathbf{b} \right| \; \blacksquare \end{align*}
(iia)
Since a{\mathbf{a}} is a unit vector,
a=14p2+36p2+9p2=149p2=0p=17  since p is a positive constant\begin{align*} \left| \mathbf{a} \right| &= 1 \\ \sqrt{4p^2 + 36p^2 + 9p^2} &= 1 \\ 49 p^2 &= 0 \\ p &= \frac{1}{7} \; \blacksquare \\ & \quad \textrm{since } p \textrm{ is a positive constant} \end{align*}
(iib)
ab{\left|\mathbf{a}\cdot\mathbf{b}\right|} is the length of projection of b{\mathbf{b}} on a  {\mathbf{a} \; \blacksquare}
(iic)
a×b=17(263)×(112)=17(978)  \begin{align*} & \mathbf{a} \times \mathbf{b} \\ &= \frac{1}{7} \begin{pmatrix} 2 \\ - 6 \\ 3 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ - 2 \end{pmatrix} \\ &= \frac{1}{7} \begin{pmatrix} 9 \\ 7 \\ 8 \end{pmatrix} \; \blacksquare \\ \end{align*}