2011 H2 Mathematics Paper 2 Question 4
Integration Techniques
Answers
(ai)
41−41(2n2+2n+1)e−2n (aii)
∫0∞x2e−2xdx=41 2π2−4π Full solutions
(ai)
∫0nx2e−2xdx=[−21x2e−2x]0n−∫0n2x(−21e−2x)dx=−21n2e−2n+0+∫0nxe−2xdx=−21n2e−2n+[−21xe−2x]0n−∫0n−21e−2xdx=−21n2e−2n−21ne−2n+∫0n21e−2xdx=−21n2e−2n−21ne−2n−[41e−2x]0n=−21n2e−2n−21ne−2n−41e−2n+41=41−41(2n2+2n+1)e−2n■ (aii)
As
n→∞, n2e−2n, ne−2n and
e−2n→0Hence
∫0nx2e−2x→41∫0∞x2e−2xdx=41■ (b)
dθdx=sec2θ When
x=0,θ=0.When
x=1,θ=4πVolume of solid obtained=π∫01(x2+14x)2dx=π∫04π(tan2θ+14tanθ)2sec2θdθ=π∫04π(sec2θ)216tan2θsec2θdθ=16π∫04πsec2θtan2θdθ=16π∫04πsin2θdθ■ 16π∫04πsin2θdθ=16π∫04π21−cos2θdθ=8π[θ−2sin2θ]04π=8π(4π−2sin2π)=2π2−4π■