2011 H2 Mathematics Paper 2 Question 4

Integration Techniques

Answers

(ai)
1414(2n2+2n+1)e2n{\frac{1}{4} - \frac{1}{4}(2n^2+2n+1)\mathrm{e}^{-2n}}
(aii)
0x2e2x  dx=14{\displaystyle \int_0^\infty x^{2}\mathrm{e}^{- 2 x} \; \mathrm{d}x = \frac{1}{4}}
2π24π{2 \pi^2 - 4 \pi}

Full solutions

(ai)
0nx2e2x  dx=[12x2e2x]0n0n2x(12e2x)  dx=12n2e2n+0+0nxe2x  dx=12n2e2n+[12xe2x]0n0n12e2x  dx=12n2e2n12ne2n+0n12e2x  dx=12n2e2n12ne2n[14e2x]0n=12n2e2n12ne2n14e2n+14=1414(2n2+2n+1)e2n  \begin{align*} & \int_0^n x^{2}\mathrm{e}^{- 2 x} \; \mathrm{d}x \\ & = \left[ -\frac{1}{2} x^{2} \mathrm{e}^{- 2 x} \right]_0^n - \int_0^n 2 x \left(- \frac{1}{2} \mathrm{e}^{- 2 x}\right) \; \mathrm{d}x \\ & = -\frac{1}{2}n^2 \mathrm{e}^{-2n} + 0 + \int_0^n x \mathrm{e}^{- 2 x} \; \mathrm{d}x \\ & = -\frac{1}{2}n^2 \mathrm{e}^{-2n} + \left[ - \frac{1}{2} x \mathrm{e}^{- 2 x} \right]_0^n - \int_0^n - \frac{1}{2} \mathrm{e}^{- 2 x} \; \mathrm{d}x \\ & = -\frac{1}{2}n^2 \mathrm{e}^{-2n} - \frac{1}{2}n \mathrm{e}^{-2n} + \int_0^n \frac{1}{2} \mathrm{e}^{- 2 x} \; \mathrm{d}x \\ & = -\frac{1}{2}n^2 \mathrm{e}^{-2n} - \frac{1}{2}n \mathrm{e}^{-2n} - \left[ \frac{1}{4} \mathrm{e}^{- 2 x} \right]_0^n \\ & = -\frac{1}{2}n^2 \mathrm{e}^{-2n} - \frac{1}{2}n \mathrm{e}^{-2n} - \frac{1}{4} \mathrm{e}^{-2n} + \frac{1}{4} \\ & = \frac{1}{4} - \frac{1}{4}(2n^2+2n+1)\mathrm{e}^{-2n}\;\blacksquare \\ \end{align*}
(aii)
As n,  {n \to \infty, \;} n2e2n,  {n^2 \mathrm{e}^{-2n}, \;} ne2n{n \mathrm{e}^{-2n} } and e2n0{\mathrm{e}^{-2n} \to 0}
Hence 0nx2e2x14{\displaystyle \int_0^n x^{2}\mathrm{e}^{- 2 x} \to \frac{1}{4}}
0x2e2x  dx=14  \int_0^\infty x^{2}\mathrm{e}^{- 2 x} \; \mathrm{d}x = \frac{1}{4} \; \blacksquare

(b)

dxdθ=sec2θ\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta
When x=0,  θ=0.{x=0, \; \theta = 0. \quad}When x=1,  θ=π4{x=1, \; \theta = \frac{\pi}{4}}
Volume of solid obtained=π01(4xx2+1)2  dx=π0π4(4tanθtan2θ+1)2sec2θ  dθ=π0π416tan2θ(sec2θ)2sec2θ  dθ=16π0π4tan2θsec2θ  dθ=16π0π4sin2θ  dθ  \begin{align*} & \textrm{Volume of solid obtained} \\ & = \pi \int_0^1 \left( \frac{4x}{x^2+1} \right)^2 \; \mathrm{d}x \\ & = \pi \int_0^{\frac{\pi}{4}} \left( \frac{4\tan \theta}{\tan^2 \theta +1} \right)^2 \sec^2 \theta \; \mathrm{d}\theta \\ & = \pi \int_0^{\frac{\pi}{4}} \frac{16 \tan^2 \theta}{(\sec^2 \theta)^2} \sec^2 \theta \; \mathrm{d}\theta \\ & = 16 \pi \int_0^{\frac{\pi}{4}} \frac{\tan^2 \theta}{\sec^2 \theta} \; \mathrm{d}\theta \\ & = 16 \pi \int_0^{\frac{\pi}{4}} \sin^2 \theta \; \mathrm{d}\theta \; \blacksquare \\ \end{align*}
16π0π4sin2θ  dθ=16π0π41cos2θ2  dθ=8π[θsin2θ2]0π4=8π(π4sinπ22)=2π24π  \begin{align*} & 16 \pi \int_0^{\frac{\pi}{4}} \sin^2 \theta \; \mathrm{d}\theta \\ & = 16 \pi \int_0^{\frac{\pi}{4}} \frac{1-\cos 2 \theta}{2} \; \mathrm{d}\theta \\ & = 8 \pi \left[ \theta - \frac{\sin 2\theta}{2} \right]_0^{\frac{\pi}{4}} \\ & = 8 \pi \left( \frac{\pi}{4} - \frac{\sin \frac{\pi}{2}}{2} \right) \\ & = 2 \pi^2 - 4 \pi \; \blacksquare \end{align*}