2010 H2 Mathematics Paper 2 Question 4

Functions

Answers

Least value of k=0{k=0}
fg(x)=(x3)2(4x)(x2){fg(x)=\frac{(x-3)^2}{(4-x)(x-2)}}
2<x<3{2<x<3} or 3<x<4{3<x<4}
Rfg=(,1)(0,)R_{fg} \allowbreak {= \left( -\infty, -1 \right) \cup \left( 0, \infty \right)}

Full solutions

(i)

(ii)

Since the graph of y=f(x){y=f(x)} has a maximum point at x=0,{x=0, } the least value of k{k} for which f1{f^{-1}} exists is k=0  {k=0 \; \blacksquare}
This is because if the domain of f{f} is {xR,x0,x1},{\{x \in \mathbb{R}, x \geq 0, x \neq 1\},} then any horizontal line y=k,kR{y=k, k \in \mathbb{R}} would cut the graph of y=f(x){y=f(x)} at most once so f{f} is one-one and f1{f^{-1}} exists {\blacksquare}

(iii)

fg(x)=f(1x3)=1(1x3)21=11(x3)2(x3)2=(x3)21(x26x+9)=(x3)2x2+6x8=(x3)2(4x)(x2)  \begin{align*} fg(x) &= f \left( \frac{1}{x-3} \right) \\ &= \frac{1}{\left( \frac{1}{x-3} \right)^2 - 1} \\ &= \frac{1}{\frac{1-(x-3)^2}{(x-3)^2}} \\ &= \frac{(x-3)^2}{1-(x^2-6x+9)} \\ &= \frac{(x-3)^2}{-x^2+6x-8} \\ &= \frac{(x-3)^2}{(4-x)(x-2)} \; \blacksquare \\ \end{align*}

(iv)

(x3)2(4x)(x2)>0 \frac{(x-3)^2}{(4-x)(x-2)} > 0
2<x<3   or   3<x<4  2 < x < 3 \; \textrm{ or } \; 3 < x < 4 \; \blacksquare

(v)

Rg=(,1)(1,0)(0,1)(1,)R_g = \left( -\infty, -1 \right) \cup \left( -1, 0 \right) \cup \left( 0, 1 \right) \cup \left( 1, \infty \right)
Rfg=(,1)(0,)R_{fg} = \left( -\infty, -1 \right) \cup \left( 0, \infty \right)