2010 H2 Mathematics Paper 1 Question 5

Graphs and Transformations

Answers

y=12(x2)36{y = \frac{1}{2}(x-2)^3 - 6}
(2+123,0){\left( 2+\sqrt[3]{12}, 0 \right)}
(0,10){\left( 0, -10 \right)}
(10,0){\left( -10, 0 \right)}
(0,2+123){\left( 0, 2+\sqrt[3]{12} \right)}

Full solutions

(i)

y=x3y=(x2)3y=12(x2)3y=12(x2)36  \begin{gather*} y = x^3 \\ \downarrow \\ y = (x-2)^3 \\ \downarrow \\ y = \frac{1}{2}(x-2)^3 \\ \downarrow \\ y = \frac{1}{2}(x-2)^3 - 6 \; \blacksquare \end{gather*}
When the curve crosses the x-{x\textrm{-}}axis, y=0{y=0}
12(x2)36=0(x2)3=12x=2+123\begin{gather*} \frac{1}{2}(x-2)^3 - 6 = 0 \\ (x-2)^3 = 12 \\ x = 2 + \sqrt[3]{12} \\ \end{gather*}
When the curve crosses the x-{x\textrm{-}}axis, x=0{x=0}
y=12(02)36=10\begin{align*} y &= \frac{1}{2}(0-2)^3 - 6 \\ &= -10 \end{align*}
Coordinates of points where the curve crosses the x-{x\textrm{-}} and y-{y\textrm{-}}axes:
(2+123,0)  (0,10)  \begin{align*} &\left( 2+\sqrt[3]{12}, 0 \right) \; \blacksquare \\ &\left( 0, -10 \right) \; \blacksquare \\ \end{align*}

(ii)