2010 H2 Mathematics Paper 1 Question 10

Vectors II: Lines and Planes

Answers

d=(369)=3(123)=3n\begin{align*} \mathbf{d} &= \begin{pmatrix} - 3 \\ 6 \\ 9 \end{pmatrix} \\ &= 3 \begin{pmatrix} - 1 \\ 2 \\ 3 \end{pmatrix} \\ &= 3 \mathbf{n} \end{align*}
Hence the direction vector of l{l} is parallel to the normal vector of p{p}
Hence l{l} is perpendicular to p{p}
(172,2,32){\left( \frac{17}{2}, 2, \frac{3}{2} \right)}
(19,19,30){\left( 19, - 19, - 30 \right)}
348 units2{348 \textrm{ units}^2}

Full solutions

(i)

l:r=(1013)+λ(369),λRl: \mathbf{r} = \begin{pmatrix} 10 \\ - 1 \\ - 3 \end{pmatrix} + \lambda \begin{pmatrix} - 3 \\ 6 \\ 9 \end{pmatrix}, \lambda \in \mathbb{R}
p:r(123)=0p: \mathbf{r} \cdot \begin{pmatrix} 1 \\ - 2 \\ - 3 \end{pmatrix} = 0
d=(369)=3(123)=3n\begin{align*} \mathbf{d} &= \begin{pmatrix} - 3 \\ 6 \\ 9 \end{pmatrix} \\ &= 3 \begin{pmatrix} - 1 \\ 2 \\ 3 \end{pmatrix} \\ &= 3 \mathbf{n} \end{align*}
Hence the direction vector of l{l} is parallel to the normal vector of p{p}
Hence l{l} is perpendicular to p{p}  {\; \blacksquare}

(ii)

Let X{X} be the point of intersection of l{l} and p{p}
Substituting equation of l{l} into equation of p,{p,}
(103λ1+6λ3+9λ)(123)=0\begin{pmatrix} 10 - 3 \lambda \\ - 1 + 6 \lambda \\ - 3 + 9 \lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ - 2 \\ - 3 \end{pmatrix} = 0
103λ2(1+6λ)3(3+9λ)=010 - 3 \lambda - 2 (- 1 + 6 \lambda) - 3 (- 3 + 9 \lambda) = 0
2142λ=042λ=21λ=12\begin{align*} 21 - 42 \lambda &= 0 \\ - 42 \lambda &= - 21 \\ \lambda &= \frac{1}{2} \\ \end{align*}
OX=(103(12)1+6(12)3+9(12))=(172232)\begin{align*} \overrightarrow{OX} &= \begin{pmatrix} 10 - 3 (\frac{1}{2}) \\ - 1 + 6 (\frac{1}{2}) \\ - 3 + 9 (\frac{1}{2}) \end{pmatrix} \\ &= \begin{pmatrix} \frac{17}{2} \\ 2 \\ \frac{3}{2} \end{pmatrix} \end{align*}
Coordinates of point of intersection: (172,2,32)  {\left( \frac{17}{2}, 2, \frac{3}{2} \right) \; \blacksquare}

(iii)

Substituting OA{\overrightarrow{OA}} into equation of l{l}
(22333)=(103λ1+6λ3+9λ)\begin{pmatrix} - 2 \\ 23 \\ 33 \end{pmatrix} = \begin{pmatrix} 10 - 3 \lambda \\ - 1 + 6 \lambda \\ - 3 + 9 \lambda \end{pmatrix}
103λ=21+6λ=233+9λ=33\begin{align} \qquad 10 - 3 \lambda &= - 2 \\ \qquad - 1 + 6 \lambda &= 23 \\ \qquad - 3 + 9 \lambda &= 33 \end{align}
Since λ=4{\lambda = 4} is a unique solution to the above system of linear equations, A{A} lies on l  {l \; \blacksquare}
By ratio theorem,
OX=OA+OB2{\displaystyle \overrightarrow{OX} = \frac{\overrightarrow{OA}+\overrightarrow{OB}}{2}}
OB=2OXOA{\overrightarrow{OB} = 2\overrightarrow{OX}-\overrightarrow{OA}}
OB=2(172232)2(22333){\overrightarrow{OB} = 2\begin{pmatrix} \frac{17}{2} \\ 2 \\ \frac{3}{2} \end{pmatrix} - 2\begin{pmatrix} - 2 \\ 23 \\ 33 \end{pmatrix}}
OB=(191930){\overrightarrow{OB} = \begin{pmatrix} 19 \\ - 19 \\ - 30 \end{pmatrix}}
Coordinates of B(19,19,30)  {B \left( 19, - 19, - 30 \right) \; \blacksquare}

(iv)

Area ofOAB=12OA×OB=12(22333)×(191930)=12(63567399)=123969+321489+159201=348 units2 (nearest whole number)  \begin{align*} & \textrm{Area of} \triangle OAB \\ = & \frac{1}{2} \left| \overrightarrow{OA} \times \overrightarrow{OB} \right | \\ = & \frac{1}{2} \left| \begin{pmatrix} - 2 \\ 23 \\ 33 \end{pmatrix} \times \begin{pmatrix} 19 \\ - 19 \\ - 30 \end{pmatrix} \right | \\ = & \frac{1}{2} \left| \begin{pmatrix} - 63 \\ 567 \\ - 399 \end{pmatrix} \right | \\ = & \frac{1}{2} \sqrt{3969 + 321489 + 159201} \\ = & 348 \textrm{ units}^2 \textrm{ (nearest whole number)} \; \blacksquare \end{align*}