2010 H2 Mathematics Paper 2 Question 2
Sigma Notation
Answers
Out of syllabus
(iib)
As
n→∞, 2(n+1)1,2(n+2)1→0 so
43−2(n+1)1−2(n+2)1→43
Hence the series is
convergent
Sum to infinity
=43 Full solutions
(i)
Out of syllabus
(iia)
r=1∑nr(r+2)1=r=1∑n(2r1−2(r+2)1)=++++++2141612(n−2)12(n−1)12n1−−−⋯−−−61811012n12(n+1)12(n+2)1=43−2(n+1)1−2(n+2)1■ (iib)
As
n→∞, 2(n+1)1,2(n+2)1→0 so
r=1∑nr(r+2)1=43−2(n+1)1−2(n+2)1→43 Hence
r=1∑∞r(r+2)1 is
convergent ■Sum to infinity=r=1∑∞r(r+2)1=43■