2009 H2 Mathematics Paper 2 Question 3

Functions

Answers

f1(x)=axbxa{f^{-1}(x) = \frac{ax}{bx-a}}
f2(x)=x{f^2(x)=x}
Rf2=(,ab)(ab,){R_{f^2}=\left(-\infty, \frac{a}{b} \right) \cup \left(\frac{a}{b}, \infty \right)}
The composite function fg{fg} does not exist as Rg⊈Df{R_g \not \subseteq D_f}
x=0  {x=0 \;} or   x=2ab{\; x=\frac{2a}{b}}

Full solutions

(i)

y=axbxabxyay=axbxyax=ayx(bya)=ayx=aybya\begin{gather*} y = \frac{ax}{bx-a} \\ bxy - ay = ax \\ bxy - ax = ay \\ x (by-a) = ay \\ x = \frac{ay}{by-a} \end{gather*}
f1(x)=axbxa  f^{-1}(x) = \frac{ax}{bx-a} \; \blacksquare
Since f(x)=f1(x),{f(x)=f^{-1}(x),}
f2(x)=ff(x)=ff1(x)=x  \begin{align*} f^2 (x) &= ff(x) \\ &= ff^{-1}(x) \\ &= x \; \blacksquare \end{align*}
Since f2(x)=x,{f^2(x)=x,}
Rf2=Df2=Df=(,ab)(ab,)  \begin{align*} R_{f^2} &= D_{f^2} \\ &= D_f \\ &= \left(-\infty, \frac{a}{b} \right) \cup \left(\frac{a}{b}, \infty \right) \; \blacksquare \end{align*}

(ii)

Rg=(,0)(0,)Df=(,ab)(ab,)\begin{align*} R_g &= \left(-\infty, 0 \right) \cup \left(0, \infty \right) \\ D_f &= \left(-\infty, \frac{a}{b} \right) \cup \left(\frac{a}{b}, \infty \right) \\ \end{align*}
Since a{a} is non-zero,
Rg⊈DfR_g \not \subseteq D_f
Hence the composite function fg{fg} does not exist {\blacksquare}

(iii)

f1(x)=xaxbxa=xax=bx2axbx22ax=0x(bx2a)=0\begin{gather*} f^{-1}(x) = x \\ \frac{ax}{bx-a} = x \\ ax = bx^2 - ax \\ bx^2 - 2ax = 0 \\ x(bx-2a) = 0 \\ \end{gather*}
x=0  or   x=2ab  \begin{align*} x &= 0 \; \blacksquare \\ \textrm{or } \; x &= \frac{2a}{b} \; \blacksquare \end{align*}