2009 H2 Mathematics Paper 2 Question 8

Permutations and Combinations (P&C)

Answers

6720{6720}
5040{5040}
192{192}
480{480}

Full solutions

(i)

Number of ways
=8!3!=6720  \begin{align*} &= \frac{8!}{3!} \\ &= 6720 \; \blacksquare \end{align*}

(ii)

By the complement method, number of ways
E  E  E  L  V  A  T D\textrm{E} \; \textrm{E} \; \textrm{E} \; \textrm{L} \; \textrm{V} \; \textrm{A} \; \boxed{\textrm{T } \textrm{D}}
=67207!×2!3!=5040  \begin{align*} &= 6720 - \frac{7!\times2!}{3!} \\ &= 5040 \; \blacksquare \end{align*}

(iii)

C  V  C  V  C  V  C  VV  C  V  C  V  C  V  C\begin{gather*} \boxed{\textrm{C}} \; \textrm{V} \; \boxed{\textrm{C}} \; \textrm{V} \; \boxed{\textrm{C}} \; \textrm{V} \; \boxed{\textrm{C}} \; \textrm{V} \\ \textrm{V} \; \boxed{\textrm{C}} \; \textrm{V} \; \boxed{\textrm{C}} \; \textrm{V} \; \boxed{\textrm{C}} \; \textrm{V} \; \boxed{\textrm{C}} \\ \end{gather*}
Number of ways
=4!×4!3!×2=192  \begin{align*} & = 4! \times \frac{4!}{3!} \times 2 \\ & = 192 \; \blacksquare \end{align*}

(iv)

E  _  _  _  E  _  _  EE  _  _  E  _  _  _  E_  E  _  _  E  _  _  EE  _  _  E  _  _  E  _\begin{gather*} \boxed{\textrm{E}} \; \_ \; \_ \; \_ \; \boxed{\textrm{E}} \; \_ \; \_ \; \boxed{\textrm{E}} \\ \boxed{\textrm{E}} \; \_ \; \_ \; \boxed{\textrm{E}} \; \_ \; \_ \; \_ \; \boxed{\textrm{E}} \\ \_ \; \boxed{\textrm{E}} \; \_ \; \_ \; \boxed{\textrm{E}} \; \_ \; \_ \; \boxed{\textrm{E}} \\ \boxed{\textrm{E}} \; \_ \; \_ \; \boxed{\textrm{E}} \; \_ \; \_ \; \boxed{\textrm{E}} \; \_ \\ \end{gather*}
Number of ways
=5!×4=480  \begin{align*} & = 5! \times 4 \\ & = 480 \; \blacksquare \end{align*}