2009 H2 Mathematics Paper 1 Question 3

Sigma Notation

Answers

1n12n+1n+1=2n3n{\frac{ 1 }{ n - 1 } - \frac{ 2 }{ n } + \frac{ 1 }{ n + 1 } = \frac{ 2 }{ n^3 - n }}
12(121n+1n+1){\frac{1}{2} \left( \frac{1}{2} - \frac{1}{n} + \frac{1}{n + 1} \right) }
As n,{ n \to \infty, } 1n,1n+10{\frac{1}{n},\frac{1}{n + 1} \to 0} so 12(121n+1n+1)14{\frac{1}{2} \left( \frac{1}{2} - \frac{1}{n} + \frac{1}{n + 1} \right) \to \frac{1}{4}}
Hence the series converges
r=21r3r=14{\displaystyle \sum_{r=2}^\infty \frac{1}{r^3-r} = \frac{1}{4}}

Full solutions

(i)

1n12n+1n+1=n(n+1)(n1)n(n+1)2(n1)(n+1)(n1)n(n+1)+(n1)(n)(n1)n(n+1)=n2+n2(n21)+n2nn(n21)=2n3n  \begin{align*} & \frac{ 1 }{ n - 1 } - \frac{ 2 }{ n } + \frac{ 1 }{ n + 1 } \\ & = \frac{n(n+1)}{(n-1)n(n+1)} - \frac{2(n-1)(n+1)}{(n-1)n(n+1)} + \frac{(n-1)(n)}{(n-1)n(n+1)} \\ & = \frac{n^2+n - 2(n^2-1) + n^2-n}{n(n^2-1)} \\ & =\frac{ 2 }{ n^3 - n } \; \blacksquare \end{align*}

(ii)

r=2n1r3r=12r=2n(1r12r+1r+1)=12(11+13+1223+14+1312+15++1n32n2+1n1+1n22n1+1n+1n12n+1n+1)=12(121n+1n+1)  \begin{align*} & \sum_{r=2}^n \frac{1}{r^3-r} \\ &= \frac{1}{2} \sum_{r=2}^n \left(\frac{1}{r - 1} - \frac{2}{r} + \frac{1}{r + 1} \right) \\ & = \frac{1}{2} \left(\def\arraystretch{1.5} \begin{array}{lclclc} & 1 &-& 1 &+& \cancel{\frac{1}{3}} \\ + & \frac{1}{2} &-& \cancel{\frac{2}{3}} &+& \cancel{\frac{1}{4}} \\ + & \cancel{\frac{1}{3}} &-& \cancel{\frac{1}{2}} &+& \cancel{\frac{1}{5}} \\ + &&& \cdots && \\ + & \cancel{\frac{1}{n - 3}} &-& \cancel{\frac{2}{n - 2}} &+& \cancel{\frac{1}{n - 1}} \\ + & \cancel{\frac{1}{n - 2}} &-& \cancel{\frac{2}{n - 1}} &+& \frac{1}{n} \\ + & \cancel{\frac{1}{n - 1}} &-& \frac{2}{n} &+& \frac{1}{n + 1} \end{array}\right) \\ &= \frac{1}{2} \left( \frac{1}{2} - \frac{1}{n} + \frac{1}{n + 1} \right) \; \blacksquare \end{align*}

(iii)

As n,{ n \to \infty, } 1n,1n+10{\displaystyle \frac{1}{n},\frac{1}{n + 1} \to 0} so
r=2n1r3r=12(121n+1n+1)14\begin{align*} & \sum_{r=2}^n \frac{1}{r^3-r} \\ &= \frac{1}{2} \left( \frac{1}{2} - \frac{1}{n} + \frac{1}{n + 1} \right) \\ &\to \frac{1}{4} \end{align*}
Hence r=21r3r{\displaystyle \sum_{r=2}^\infty \frac{1}{r^3-r}} converges {\blacksquare}
r=11r3r=14  \sum_{r=1}^\infty \frac{1}{r^3-r} = \frac{1}{4} \; \blacksquare