Math Repository
about
topic
al
year
ly
Yearly
2009
P2 Q2
Topical
Vectors I
09 P2 Q2
2009 H2 Mathematics Paper 2 Question 2
Vectors I: Basics, Dot and Cross Products
Answers
(i)
P
(
12
,
−
4
,
6
)
{P \left( 12, - 4, 6 \right)}
P
(
12
,
−
4
,
6
)
(iii)
c
=
1
7
(
6
−
2
3
)
{\displaystyle \mathbf{c}=\frac{1}{7} \begin{pmatrix} 6 \\ - 2 \\ 3 \end{pmatrix}}
c
=
7
1
6
−
2
3
∣
a
⋅
c
∣
{\left|\mathbf{a}\cdot\mathbf{c}\right|}
∣
a
⋅
c
∣
represents the length of projection of
O
A
→
{\overrightarrow{OA}}
O
A
on
O
P
→
{\overrightarrow{OP}}
OP
(iv)
a
×
p
=
28
(
5
3
−
8
)
{\mathbf{a}\times\mathbf{p}=28 \begin{pmatrix} 5 \\ 3 \\ - 8 \end{pmatrix}}
a
×
p
=
28
5
3
−
8
∣
a
×
p
∣
{\left|\mathbf{a}\times\mathbf{p}\right|}
∣
a
×
p
∣
represents the area of the parallelogram formed by
O
A
→
{\overrightarrow{OA}}
O
A
and
O
P
→
{\overrightarrow{OP}}
OP
Area of
△
O
A
P
=
98
2
units
2
{\triangle OAP} \allowbreak = {98 \sqrt{2} \textrm{ units}^2}
△
O
A
P
=
98
2
units
2
Full solutions
(i)
By Ratio Theorem,
O
P
→
=
2
O
B
→
+
O
A
→
3
=
2
(
11
−
13
2
)
+
(
14
14
14
)
3
=
(
12
−
4
6
)
\begin{align*} \overrightarrow{OP} &= \frac{2\overrightarrow{OB}+\overrightarrow{OA}}{3} \\ &= \frac{2\begin{pmatrix} 11 \\ - 13 \\ 2 \end{pmatrix}+\begin{pmatrix} 14 \\ 14 \\ 14 \end{pmatrix}}{3} \\ &= \begin{pmatrix} 12 \\ - 4 \\ 6 \end{pmatrix} \end{align*}
OP
=
3
2
OB
+
O
A
=
3
2
11
−
13
2
+
14
14
14
=
12
−
4
6
Coordinates of
P
(
12
,
−
4
,
6
)
■
{P \left( 12, - 4, 6 \right) \; \blacksquare}
P
(
12
,
−
4
,
6
)
■
(ii)
A
B
→
=
O
B
→
−
O
A
→
=
(
−
3
−
27
−
12
)
=
−
3
(
1
9
4
)
\begin{align*} \overrightarrow{AB} &= \overrightarrow{OB} - \overrightarrow{OA} \\ &= \begin{pmatrix} - 3 \\ - 27 \\ - 12 \end{pmatrix} \\ &= - 3 \begin{pmatrix} 1 \\ 9 \\ 4 \end{pmatrix} \end{align*}
A
B
=
OB
−
O
A
=
−
3
−
27
−
12
=
−
3
1
9
4
A
B
→
⋅
O
P
→
=
−
3
(
1
9
4
)
⋅
(
12
−
4
6
)
=
−
3
(
12
−
36
+
24
)
=
0
\begin{align*} & \overrightarrow{AB} \cdot \overrightarrow{OP} \\ &= - 3 \begin{pmatrix} 1 \\ 9 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 12 \\ - 4 \\ 6 \end{pmatrix} \\ &= -3(12 - 36 + 24) \\ &= 0 \end{align*}
A
B
⋅
OP
=
−
3
1
9
4
⋅
12
−
4
6
=
−
3
(
12
−
36
+
24
)
=
0
Hence
A
B
{AB}
A
B
and
O
P
{OP}
OP
are perpendicular
■
{\; \blacksquare}
■
(iii)
c
=
O
P
→
∣
O
P
→
∣
=
1
144
+
16
+
36
(
12
−
4
6
)
=
1
14
(
12
−
4
6
)
=
1
7
(
6
−
2
3
)
■
\begin{align*} \mathbf{c} &= \frac{\overrightarrow{OP}}{\left|\overrightarrow{OP}\right|} \\ &= \frac{1}{\sqrt{144 + 16 + 36}} \begin{pmatrix} 12 \\ - 4 \\ 6 \end{pmatrix} \\ &= \frac{1}{14} \begin{pmatrix} 12 \\ - 4 \\ 6 \end{pmatrix} \\ &= \frac{1}{7} \begin{pmatrix} 6 \\ - 2 \\ 3 \end{pmatrix} \; \blacksquare \end{align*}
c
=
OP
OP
=
144
+
16
+
36
1
12
−
4
6
=
14
1
12
−
4
6
=
7
1
6
−
2
3
■
The geometric meaning of
∣
a
⋅
c
∣
{\left|\mathbf{a}\cdot\mathbf{c}\right|}
∣
a
⋅
c
∣
is the length of projection of
O
A
→
{\overrightarrow{OA}}
O
A
on
O
P
→
■
{\overrightarrow{OP} \; \blacksquare}
OP
■
(iv)
a
×
p
=
(
14
14
14
)
×
(
12
−
4
6
)
=
14
(
2
)
(
1
1
1
)
×
(
6
−
2
3
)
=
28
(
5
3
−
8
)
■
\begin{align*} & \mathbf{a} \times \mathbf{p} \\ &= \begin{pmatrix} 14 \\ 14 \\ 14 \end{pmatrix} \times \begin{pmatrix} 12 \\ - 4 \\ 6 \end{pmatrix} \\ &= 14(2) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 6 \\ - 2 \\ 3 \end{pmatrix} \\ &= 28 \begin{pmatrix} 5 \\ 3 \\ - 8 \end{pmatrix} \; \blacksquare \end{align*}
a
×
p
=
14
14
14
×
12
−
4
6
=
14
(
2
)
1
1
1
×
6
−
2
3
=
28
5
3
−
8
■
The geometric meaning of
∣
a
×
p
∣
{\left|\mathbf{a}\times\mathbf{p}\right|}
∣
a
×
p
∣
is the area of the parallelogram formed by
O
A
→
{\overrightarrow{OA}}
O
A
and
O
P
→
■
{\overrightarrow{OP} \; \blacksquare}
OP
■
Area of
△
O
A
P
=
1
2
∣
a
×
p
∣
=
1
2
∣
28
(
5
3
−
8
)
∣
=
14
25
+
9
+
64
=
14
98
=
98
2
units
2
■
\begin{align*} & \textrm{Area of } \triangle OAP \\ &= \frac{1}{2} \left|\mathbf{a}\times\mathbf{p}\right| \\ &= \frac{1}{2} \left| 28 \begin{pmatrix} 5 \\ 3 \\ - 8 \end{pmatrix} \right| \\ &= 14 \sqrt{25 + 9 + 64} \\ &= 14 \sqrt{98} \\ &= 98 \sqrt{2} \textrm{ units}^2 \; \blacksquare \end{align*}
Area of
△
O
A
P
=
2
1
∣
a
×
p
∣
=
2
1
28
5
3
−
8
=
14
25
+
9
+
64
=
14
98
=
98
2
units
2
■
Back to top ▲