2009 H2 Mathematics Paper 1 Question 4

Graphs and Transformations

Answers

f(27)+f(45)=11{f(27)+f(45)=11}
1103{\frac{110}{3}}

Full solutions

(i)

f(27)+f(45)=f(3)+f(1)=(2(3)1)+(712)=5+6=11  \begin{align*} & f(27) + f(45) \\ & = f(3) + f(1) \\ & = \Big(2(3)-1\Big) + \left(7-1^2\right) \\ & = 5 + 6 \\ & = 11 \; \blacksquare \end{align*}

(ii)

(iii)

43f(x)  dx=202(7x2)  dx+24(2x1)  dx+23(2x1)  dx=2[7xx33]02+[x2x]24+[x2x]23=2(1483)+(42422+2)+(32322+2)=1103  \begin{align*} & \int_{-4}^3 f(x) \; \mathrm{d}x \\ & = 2 \int_{0}^2 (7-x^2) \; \mathrm{d}x + \int_2^4 (2x-1) \; \mathrm{d}x + \int_2^3 (2x-1) \; \mathrm{d}x \\ & = 2 \left[ 7x-\frac{x^3}{3} \right]_{0}^2 + \left[ x^2 - x \right]_2^4 + \left[ x^2 - x \right]_2^3 \\ & = 2 \left( 14 - \frac{8}{3} \right) + \left( 4^2 - 4 - 2^2 + 2 \right) + \left( 3^2 - 3 - 2^2 + 2 \right) \\ & = \frac{110}{3} \; \blacksquare \end{align*}