Math Repository
about
topic
al
year
ly
Yearly
2009
P1 Q8
Topical
AP/GP
09 P1 Q8
2009 H2 Mathematics Paper 1 Question 8
Arithmetic and Geometric Progressions (APs, GPs)
Answers
(ii)
L
=
272
cm
{L = 272 \textrm{ cm}}
L
=
272
cm
u
13
=
10
cm
{u_{13} = 10 \textrm{ cm}}
u
13
=
10
cm
(iii)
d
=
−
0.491
{d=-0.491}
d
=
−
0.491
Length of longest bar
=
16.8
cm
{=16.8 \textrm{ cm}}
=
16.8
cm
Full solutions
(i)
u
25
=
5
a
r
n
−
1
=
5
20
r
24
=
5
r
24
=
1
4
r
=
(
1
4
)
1
24
=
(
1
2
)
1
12
\begin{align*} u_{25} &= 5 \\ ar^{n-1} &= 5 \\ 20r^{24} &= 5 \\ r^{24} &= \frac{1}{4} \\ r &= \left(\frac{1}{4}\right)^\frac{1}{24} \\ &= \left(\frac{1}{2}\right)^\frac{1}{12} \\ \end{align*}
u
25
a
r
n
−
1
20
r
24
r
24
r
=
5
=
5
=
5
=
4
1
=
(
4
1
)
24
1
=
(
2
1
)
12
1
S
∞
=
a
1
−
r
=
20
1
−
(
1
2
)
1
12
=
356.34
<
357
\begin{align*} S_{\infty} &= \frac{a}{1-r} \\ &= \frac{20}{1-\left(\frac{1}{2}\right)^\frac{1}{12}} \\ &= 356.34 \\ &< 357 \end{align*}
S
∞
=
1
−
r
a
=
1
−
(
2
1
)
12
1
20
=
356.34
<
357
Hence the total length of all the bars must be less than
357
{357}
357
cm, not matter how many bars there are
■
{\blacksquare}
■
(ii)
L
=
S
25
=
a
(
1
−
r
n
)
1
−
r
=
20
(
1
−
(
1
2
)
25
12
)
1
−
(
1
2
)
1
12
=
272
cm (3sf)
■
\begin{align*} L &= S_{25} \\ &= \frac{a(1-r^n)}{1-r} \\ &= \frac{20\Big(1-\left(\frac{1}{2}\right)^{\frac{25}{12}}\Big)}{1-\left(\frac{1}{2}\right)^{\frac{1}{12}}} \\ &= 272 \textrm{ cm (3sf)} \; \blacksquare \end{align*}
L
=
S
25
=
1
−
r
a
(
1
−
r
n
)
=
1
−
(
2
1
)
12
1
20
(
1
−
(
2
1
)
12
25
)
=
272
cm (3sf)
■
Length of
13
{13}
13
th bar
u
13
=
a
r
12
=
20
(
1
2
)
=
10
cm
■
\begin{align*} u_{13} &= ar^{12} \\ &= 20\left(\frac{1}{2}\right) \\ &= 10 \textrm{ cm} \; \blacksquare \end{align*}
u
13
=
a
r
12
=
20
(
2
1
)
=
10
cm
■
(iii)
a
+
24
d
=
5
25
2
(
2
a
+
24
d
)
=
272.26
\begin{align} && \quad a + 24d &= 5 \\ && \quad \frac{25}{2}(2a+24d) &= 272.26 \\ \end{align}
a
+
24
d
2
25
(
2
a
+
24
d
)
=
5
=
272.26
Solving with a GC,
a
=
16.8
(3 sf)
d
=
−
0.491
(3 sf)
■
\begin{align*} a &= 16.8 \textrm{ (3 sf)} \\ d &= -0.491 \textrm{ (3 sf)} \; \blacksquare \end{align*}
a
d
=
16.8
(3 sf)
=
−
0.491
(3 sf)
■
Length of longest bar
=
16.8
cm
■
{=16.8 \textrm{ cm} \; \blacksquare}
=
16.8
cm
■
Back to top ▲