2009 H2 Mathematics Paper 1 Question 10

Vectors II: Lines and Planes

Answers

70.9{70.9^\circ}
l:r=(010)+λ(111),λR{l: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} - 1 \\ - 1 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}}
xy=1{x - y = - 1}

Full solutions

(i)

n1n2=n1n2cosθ{\left|\mathbf{n_1} \cdot \mathbf{n_2}\right| = \left| \mathbf{n_1} \right| \left| \mathbf{n_2} \right| \cos \theta}
(213)(121)=(213)(121)cosθ\left|\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} - 1 \\ 2 \\ 1 \end{pmatrix} \right| = \left| \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \right| \left| \begin{pmatrix} - 1 \\ 2 \\ 1 \end{pmatrix} \right| \cos \theta
3=146cosθ\left|3 \right| = \sqrt{14} \sqrt{6} \cos \theta
cosθ=3146\cos \theta = \frac{3}{\sqrt{14}\sqrt{6}}
θ=70.9  \theta = 70.9^\circ \; \blacksquare

(ii)

2x+y+3z=1x+2y+z=2\begin{align} \qquad 2x + y + 3z &= 1 \\ \qquad -x + 2y + z &= 2 \end{align}
Solving using a GC,
l:r=(010)+λ(111),λR  l: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} - 1 \\ - 1 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R} \; \blacksquare

(iii)

2x+y+3z1+k(x+2y+z2)=02x+y+3z -1 +k(-x+2y+z-2) = 0
(2k)x+(1+2k)y+(3+k)z=1+2k(2-k)x+(1+2k)y+(3+k)z = 1 +2k
r(2k1+2k3+k)=1+2k\mathbf{r} \cdot \begin{pmatrix}2-k\\1+2k\\3+k\end{pmatrix} = 1 +2k
Substituting equation of l{l} into equation of p3{p_3},
LHS=(λ1λλ)(2k1+2k3+k)=λ(2k)+(1λ)(1+2k)+λ(3+k)=2λ+λk+1+2kλ2λk+3λ+λk=1+2k=RHS\begin{align*} & \textrm{LHS} \\ = & \begin{pmatrix} - \lambda \\ 1 - \lambda \\ \lambda \end{pmatrix} \cdot \begin{pmatrix}2-k\\1+2k\\3+k\end{pmatrix} \\ = & -\lambda(2-k) + (1-\lambda)(1+2k) + \lambda(3+k) \\ = & -2\lambda + \lambda k + 1 + 2k - \lambda - 2 \lambda k + 3 \lambda + \lambda k \\ = & 1 + 2k \\ = & \textrm{RHS} \end{align*}
Hence l{l} lies in p3{p_3} for any k.  {k. \; \blacksquare}
Substituting (2,3,4){(2,3,4)} into equation of p3{p_3},
2(2)+3+3(4)1+k(2+2(3)+42)=02(2)+3+3(4) - 1 + k(-2+2(3)+4-2) = 0
18+6k=0k=3\begin{gather*}18 + 6k = 0 \\ k=-3\end{gather*}
Substituting k=3{k=-3} into equation of p3{p_3},
2x+y+3z13(x+2y+z2)=02x+y+3z - 1 -3(-x+2y+z-2) = 0
5x5y5=05x-5y - 5 = 0
Cartesian equation required: xy=1  {x-y = 1 \; \blacksquare}