2017 H2 Mathematics Paper 1 Question 7
Integration Techniques
Answers
4m−4nsin(2m−2n)x−4m+4nsin(2m+2n)x+C Full solutions
(i)
∫sin2mxsin2nxdx=−21∫(cos(2m+2n)x−cos(2m−2n)x)dx=−21(2m+2nsin(2m+2n)x−2m−2nsin(2m−2n)x)+C=4m−4nsin(2m−2n)x−4m+4nsin(2m+2n)x+C■ (ii)
∫0π(sin2mx+sin2nx)2dx∫0π(sin22mx+2sin2mxsin2nx+sin22nx)dx∫0π(21−cos4mx−cos(2m+2n)x+cos(2m−2n)x+21−cos4nx)dx=[2x−8msin4mx−2m+2nsin(2m+2n)x+2m−2nsin(2m−2n)x=[++2x−8nsin4nx]0π=2π−8msin4mπ−2m+2nsin(2m+2n)π+2m−2nsin(2m−2n)π+2π−8nsin4nπ−0=π−0=π■