2017 H2 Mathematics Paper 1 Question 4

Graphs and Transformations

Answers

x=2{x=-2}
y=4{y=4}
  • Translate the graph of C{C} 2{2} units in the positive x-{x\textrm{-}}axis direction.
  • Translate the resulting graph 4{4} units in the negative y-{y\textrm{-}}axis direction.

Full solutions

(i)

dydx=4(x+2)1(4x+9)(x+2)2=1(x+2)2\begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4(x+2)-1(4x+9)}{(x+2)^2} \\ &= \frac{- 1}{(x+2)^2} \end{align*}
Since (x+2)2>0{(x+2)^2 > 0} for all xR,x2,{x \in \mathbb{R}, x \neq -2, } dydx<0{\displaystyle \frac{\mathrm{d}y}{\mathrm{d}x} < 0}
Hence the gradient of C{C} is negative for all points on C  {C \; \blacksquare}

(ii)

y=4x+9x+2=4x+8+1x+2=4+1x+2\begin{align*} y &= \frac{4x+9}{x+2} \\ &= \frac{4x+8+1}{x+2} \\ &= 4 + \frac{1}{x+2} \end{align*}
Hence the equations of the asymptotes of C:{C:}
x=2  y=4  \begin{align*} x &= -2 \; \blacksquare \\ y &= 4 \; \blacksquare \end{align*}

(iii)

  • Translate the graph of C{C} 2{2} units in the positive x-{x\textrm{-}}axis direction.
  • Translate the resulting graph 4{4} units in the negative y-{y\textrm{-}}axis direction.