Math Repository
about
topic
al
year
ly
Yearly
2017
P2 Q2
Topical
AP/GP
17 P2 Q2
2017 H2 Mathematics Paper 2 Question 2
Arithmetic and Geometric Progressions (APs, GPs)
Answers
(i)
d
=
3
2
{d=\frac{3}{2}}
d
=
2
3
(ii)
r
=
−
1.45
{r=-1.45}
r
=
−
1.45
or
r
=
1.21
{r=1.21}
r
=
1.21
(iii)
Smallest
n
=
42
{\textrm{Smallest } n = 42}
Smallest
n
=
42
Full solutions
(i)
S
13
=
156
n
2
(
2
a
+
(
n
−
1
)
d
)
=
156
13
2
(
2
(
3
)
+
(
13
−
1
)
d
)
=
156
6
+
12
d
=
24
d
=
3
2
■
\begin{gather*} S_{13} = 156 \\ \frac{n}{2} \Big( 2a + \left( n - 1 \right) d \Big) = 156 \\ \frac{13}{2}\Big( 2(3) + (13-1)d \Big) = 156 \\ 6 + 12d = 24 \\ d = \frac{3}{2} \; \blacksquare \end{gather*}
S
13
=
156
2
n
(
2
a
+
(
n
−
1
)
d
)
=
156
2
13
(
2
(
3
)
+
(
13
−
1
)
d
)
=
156
6
+
12
d
=
24
d
=
2
3
■
(ii)
S
13
=
156
a
(
1
−
r
n
)
1
−
r
=
156
3
(
1
−
r
13
)
1
−
r
=
156
1
−
r
13
=
52
(
1
−
r
)
r
13
−
52
r
+
51
=
0
■
\begin{gather*} S_{13} = 156 \\ \frac{a\left(1-r^{n}\right)}{1-r} = 156 \\ \frac{3(1-r^{13})}{1-r} = 156 \\ 1-r^{13} = 52(1-r) \\ r^{13} - 52 r + 51 = 0 \; \blacksquare \end{gather*}
S
13
=
156
1
−
r
a
(
1
−
r
n
)
=
156
1
−
r
3
(
1
−
r
13
)
=
156
1
−
r
13
=
52
(
1
−
r
)
r
13
−
52
r
+
51
=
0
■
r
=
1
{r=1}
r
=
1
is a root of the equation because
1
13
−
52
(
1
)
+
51
=
1
−
52
+
51
=
0
\begin{align*} & 1^{13}-52(1)+51 \\ &= 1-52+51 \\ &= 0 \end{align*}
1
13
−
52
(
1
)
+
51
=
1
−
52
+
51
=
0
However, if
r
=
1
,
{r=1, }
r
=
1
,
then the geometric progression is a constant sequence
3
,
3
,
3
,
…
3, 3, 3, \ldots
3
,
3
,
3
,
…
Then the sum of the first
13
{13}
13
terms is
13
×
3
=
39
≠
156
{13\times 3 = 39 \neq 156}
13
×
3
=
39
=
156
Hence the common ratio cannot be
1
■
{1 \; \blacksquare}
1
■
Using a GC,
r
=
−
1.45
or
r
=
1.21
■
r=-1.45 \; \textrm{ or } \; r=1.21 \; \blacksquare
r
=
−
1.45
or
r
=
1.21
■
(iii)
r
=
1.2100
{r=1.2100}
r
=
1.2100
a
r
n
−
1
>
100
(
a
+
(
n
−
1
)
d
)
3
(
1.21
)
n
−
1
−
150
n
−
150
>
0
\begin{gather*} ar^{n-1} > 100 \Big( a + (n-1)d \Big) \\ 3(1.21)^{n-1} - 150n - 150 > 0 \end{gather*}
a
r
n
−
1
>
100
(
a
+
(
n
−
1
)
d
)
3
(
1.21
)
n
−
1
−
150
n
−
150
>
0
Using a GC,
Smallest
n
=
42
■
\textrm{Smallest } n = 42 \; \blacksquare
Smallest
n
=
42
■
Back to top ▲