(i)
Let
X denote the mass of a randomly selected sphere
X∼N(20,0.25) P(X>20.2)=0.345 (3 sf)■ (ii)
1.1X1.1X∼N(1.1×20,1.12×0.52)∼N(22,0.3025) P(21.5<1.1X<22.45)=0.612 (3 sf)■ (iii)
Let
Y denote the mass of a randomly chosen metal bar with mean
μ and standard deviation
σY∼N(μ,σ2)Z=σX−μ∼N(0,1) P(Y>12.2)P(Z>σ12.2−μ)=0.6=0.6 σ12.2−μ=−0.25335 μ−0.25335σ=12.2 P(Y<12)P(Z<σ12−μ)=0.25=0.25 σ12−μ=−0.25335 μ−0.67449σ=12 Solving
(1) and
(2) simultaneously,
Mean =μ=12.320=12.3 g (3 sf)■ Standard deviation =σ=0.47490=0.475 g (3 sf)■ (iv)
Y∼N(12.320,0.474902) Let
W=1.1X1+1.1X2+Y denote the total mass of a randomly chosen component
WW∼N(2×22+12.320,2×0.3025+0.474902)∼N(56.32,0.83053) P(W>k)k=0.75=55.7 (3 sf)■