2017 H2 Mathematics Paper 2 Question 10

The Normal Distribution

Answers

0.345{0.345}
0.612{0.612}
Mean =12.3 g{= 12.3 \textrm{ g}}
Standard deviation =0.475 g{= 0.475 \textrm{ g}}
55.7{55.7}

Full solutions

(i)

Let X{X} denote the mass of a randomly selected sphere
XN(20,0.25)X \sim \textrm{N}( 20, 0.25 )
P(X>20.2)=0.345 (3 sf)  \begin{align*} & \textrm{P}(X > 20.2) \\ &= 0.345 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(ii)

1.1XN(1.1×20,1.12×0.52)1.1XN(22,0.3025)\begin{align*} 1.1X &\sim \textrm{N}(1.1 \times 20, 1.1^2 \times 0.5^2) \\ 1.1X &\sim \textrm{N}(22,0.3025) \end{align*}
P(21.5<1.1X<22.45)=0.612 (3 sf)  \begin{align*} & \textrm{P}(21.5 < 1.1X < 22.45) \\ &= 0.612 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(iii)

Let Y{Y} denote the mass of a randomly chosen metal bar with mean μ{\mu} and standard deviation σ{\sigma}
YN(μ,σ2)Z=XμσN(0,1)\begin{gather*} Y \sim \textrm{N}(\mu, \sigma^2) \\ Z = \frac{X-\mu}{\sigma} \sim \textrm{N}(0, 1) \end{gather*}
P(Y>12.2)=0.6P(Z>12.2μσ)=0.6\begin{align*} \textrm{P}(Y > 12.2) &= 0.6 \\ \textrm{P}\left(Z > \frac{12.2-\mu}{\sigma}\right) &= 0.6 \\ \end{align*}
12.2μσ=0.25335\frac{12.2-\mu}{\sigma} = -0.25335
μ0.25335σ=12.2\begin{equation} \mu -0.25335 \sigma = 12.2 \end{equation}
P(Y<12)=0.25P(Z<12μσ)=0.25\begin{align*} \textrm{P}(Y < 12) &= 0.25 \\ \textrm{P}\left(Z < \frac{12-\mu}{\sigma}\right) &= 0.25 \\ \end{align*}
12μσ=0.25335\frac{12-\mu}{\sigma} = -0.25335
μ0.67449σ=12\begin{equation} \mu -0.67449 \sigma = 12 \end{equation}
Solving (1){(1)} and (2){(2)} simultaneously,
Mean =μ=12.320=12.3 g (3 sf)  \begin{align*} \textrm{Mean } &= \mu \\ &= 12.320 \\ &= 12.3 \textrm{ g (3 sf)} \; \blacksquare \end{align*}
Standard deviation =σ=0.47490=0.475 g (3 sf)  \begin{align*} & \textrm{Standard deviation } \\ &= \sigma \\ &= 0.47490 \\ &= 0.475 \textrm{ g (3 sf)} \; \blacksquare \end{align*}

(iv)

YN(12.320,0.474902)Y \sim \textrm{N}(12.320, 0.47490^2)
Let W=1.1X1+1.1X2+Y{W = 1.1X_1 + 1.1X_2 + Y} denote the total mass of a randomly chosen component
WN(2×22+12.320,2×0.3025+0.474902)WN(56.32,0.83053)\begin{align*} W &\sim \textrm{N}(2 \times 22 + 12.320, 2 \times 0.3025 + 0.47490^2) \\ W &\sim \textrm{N}( 56.32, 0.83053 ) \end{align*}
P(W>k)=0.75k=55.7 (3 sf)  \begin{align*} \textrm{P}(W > k) &= 0.75 \\ k &= 55.7 \textrm{ (3 sf)} \; \blacksquare \end{align*}