2017 H2 Mathematics Paper 2 Question 5

Discrete Random Variables (DRVs)

Answers

t{t} 2{2} 3{3} 4{4} 5{5}
P(T=t){\mathrm{P}(T=t)} 512{\frac{5}{12}} 514{\frac{5}{14}} 528{\frac{5}{28}} 121{\frac{1}{21}}
E(T)=207{\mathrm{E}(T)=\frac{20}{7}}
Var(T)=7598{\mathrm{Var}(T)=\frac{75}{98}}
0.238{0.238}

Full solutions

(i)

P(T=2)=69(58)=512  P(T=3)=69(38)(57)×2!=514  P(T=4)=69(38)(27)(56)×3!2!=528  P(T=5)=69(38)(27)(16)(55)×4!3!=121  \begin{align*} \mathrm{P}(T=2) &= \frac{6}{9} \left( \frac{5}{8} \right) \\ &= \frac{5}{12} \; \blacksquare \\ \mathrm{P}(T=3) &= \frac{6}{9} \left( \frac{3}{8} \right) \left( \frac{5}{7} \right) \times 2! \\ &= \frac{5}{14} \; \blacksquare \\ \mathrm{P}(T=4) &= \frac{6}{9} \left( \frac{3}{8} \right) \left( \frac{2}{7} \right) \left( \frac{5}{6} \right) \times \frac{3!}{2!} \\ &= \frac{5}{28} \; \blacksquare \\ \mathrm{P}(T=5) &= \frac{6}{9} \left( \frac{3}{8} \right) \left( \frac{2}{7} \right) \left( \frac{1}{6} \right) \left( \frac{5}{5} \right) \times \frac{4!}{3!} \\ &= \frac{1}{21} \; \blacksquare \\ \end{align*}
t{t} 2{2} 3{3} 4{4} 5{5}
P(T=t){\mathrm{P}(T=t)} 512{\frac{5}{12}} 514{\frac{5}{14}} 528{\frac{5}{28}} 121{\frac{1}{21}}

(ii)

E(T)=ttP(T=t)=2(512)+3(514)+4(528)+5(121)=207  \begin{align*} \mathrm{E}(T) &= \sum_t t P(T=t) \\ &= 2\left(\frac{5}{12}\right) + 3\left(\frac{5}{14}\right) + 4\left(\frac{5}{28}\right) + 5\left(\frac{1}{21}\right) \\ &= \frac{20}{7} \; \blacksquare \end{align*}
E(T2)=tt2P(T=t)=22(512)+32(514)+42(528)+52(121)=12514\begin{align*} \mathrm{E}(T^2) &= \sum_t t^2 P(T=t) \\ &= 2^2\left(\frac{5}{12}\right) + 3^2\left(\frac{5}{14}\right) + 4^2\left(\frac{5}{28}\right) + 5^2\left(\frac{1}{21}\right) \\ &= \frac{125}{14} \end{align*}
Var(T)=E(T2)(E(T))2=12514(207)2=7598  \begin{align*} \mathrm{Var}(T) &= \mathrm{E}(T^2) - \left( \mathrm{E}(T) \right)^2 \\ &= \frac{125}{14} - \left( \frac{20}{7} \right)^2 \\ &= \frac{75}{98} \; \blacksquare \end{align*}

(iii)

P(T4)=P(T=4)+P(T=5)=528+121=1984\begin{align*} \mathrm{P}(T\geq 4) &= \mathrm{P}(T = 4) + \mathrm{P}(T = 5) \\ &= \frac{5}{28} + \frac{1}{21} \\ &= \frac{19}{84} \end{align*}
Let X{X} denote the r.v. of the number of times Lee takes at least 4 counters out of the bag in his 15{15} games
XB(15,1984)X \sim \textrm{B}\left(15, \frac{19}{84}\right)
P(X5)=1P(X4)=0.238  \begin{align*} \mathrm{P}(X \geq 5) &= 1 - \mathrm{P}(X\leq 4) \\ &= 0.238 \; \blacksquare \end{align*}