2017 H2 Mathematics Paper 1 Question 10

Vectors II: Lines and Planes

Answers

a=225{a=- \frac{22}{5}}
R(32,12,1){R \left( \frac{3}{2}, \frac{1}{2}, - 1 \right)}
PR=1210 m{|\overrightarrow{PR}|=\frac{1}{2} \sqrt{10} \textrm{ m}}

Full solutions

(i)

PQ=OQOP=(57a)(121)=(45a+1)\begin{align*} \overrightarrow{PQ} &= \overrightarrow{OQ} - \overrightarrow{OP} \\ &= \begin{pmatrix}5\\7\\a\end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ - 1 \end{pmatrix} \\ &= \begin{pmatrix}4\\5\\a+1\end{pmatrix} \end{align*}
C:  r=λ(312),λRPQ:  r=(121)+μ(45a+1),μR\begin{align*} C: \; &\mathbf{r} = \lambda \begin{pmatrix} 3 \\ 1 \\ - 2 \end{pmatrix}, \lambda \in \mathbb{R} \\ PQ: \; &\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ - 1 \end{pmatrix} + \mu \begin{pmatrix}4\\5\\a+1\end{pmatrix}, \mu \in \mathbb{R} \\ \end{align*}
Equation the equation of the two cables/lines,
(3λλ2λ)=(1+4μ2+5μ1+(a+1)μ)\begin{pmatrix} 3 \lambda \\ \lambda \\ - 2 \lambda \end{pmatrix} = \begin{pmatrix}1+4\mu\\2+5\mu\\-1+(a+1)\mu\end{pmatrix}
3λ=1+4μλ=2+5μ2λ=1+(a+1)μ\begin{align} &\qquad& 3\lambda &= 1 + 4 \mu \\ &\qquad& \lambda &= 2 + 5 \mu \\ &\qquad& -2\lambda &= -1 + (a+1) \mu \end{align}
Solving (1) and (2) with a GC,λ=311,{\lambda = - \frac{3}{11},} μ=511{\mu = - \frac{5}{11}}
Substituting into equation (3),
2(311)=1+(a+1)(511)a=225  \begin{align*} -2\left(- \frac{3}{11}\right) &=-1+(a+1)\left(- \frac{5}{11}\right) \\ a &= - \frac{22}{5} \; \blacksquare \end{align*}

(ii)

Since R{R} is on C,{C,}OR=(3λλ2λ){\overrightarrow{OR} = \begin{pmatrix} 3 \lambda \\ \lambda \\ - 2 \lambda \end{pmatrix}}
PR=OROP=(3λλ2λ)(121)=(3λ1λ22λ+1)\begin{align*} \overrightarrow{PR} &= \overrightarrow{OR} - \overrightarrow{OP} \\ &= \begin{pmatrix} 3 \lambda \\ \lambda \\ - 2 \lambda \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ - 1 \end{pmatrix} \\ &= \begin{pmatrix}3\lambda-1\\\lambda-2\\-2\lambda+1\end{pmatrix} \end{align*}
QR=OROQ=(3λλ2λ)(573)=(3λ5λ72λ+3)\begin{align*} \overrightarrow{QR} &= \overrightarrow{OR} - \overrightarrow{OQ} \\ &= \begin{pmatrix} 3 \lambda \\ \lambda \\ - 2 \lambda \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ - 3 \end{pmatrix} \\ &= \begin{pmatrix}3\lambda-5\\\lambda-7\\-2\lambda+3\end{pmatrix} \end{align*}
PRQR=(3λ1λ22λ+1)(3λ5λ72λ+3)=(3λ1)(3λ5)+(λ2)(λ7)+(2λ+1)(2λ+3)=(9λ218λ+5)+(λ29λ+14)+(4λ28λ+3)=14λ235λ+22=14(λ252λ+117)=14(λ54)2+18\begin{align*} & \overrightarrow{PR} \cdot \overrightarrow{QR} \\ = & \begin{pmatrix}3\lambda-1\\\lambda-2\\-2\lambda+1\end{pmatrix} \cdot \begin{pmatrix}3\lambda-5\\\lambda-7\\-2\lambda+3\end{pmatrix} \\ = & (3 \lambda - 1)(3 \lambda - 5) + (\lambda - 2)(\lambda - 7) + (- 2 \lambda + 1)(- 2 \lambda + 3) \\ = & (9 \lambda^2 - 18 \lambda + 5) + (\lambda^2 - 9 \lambda + 14) + (4 \lambda^2 - 8 \lambda + 3) \\ = & 14 \lambda^2 - 35 \lambda + 22 \\ = & 14 \left(\lambda^2 - \frac{5}{2} \lambda + \frac{11}{7}\right) \\ = & 14 \left(\lambda - \frac{5}{4}\right)^2 + \frac{1}{8} \end{align*}
For all λR,{\lambda \in \mathbb{R},} (λ54)20{\left(\lambda-\frac{5}{4}\right)^2 \geq 0} so 14(λ54)2+18>0{14 \left(\lambda - \frac{5}{4}\right)^2 + \frac{1}{8} > 0}
Hence PRQR0{\overrightarrow{PR}\cdot\overrightarrow{QR}\neq0} and PRQ{\angle PRQ} is never 90  {90^{\circ} \; \blacksquare}

(iii)

For length of PR{PR} to be as small as possible, R{R} is the foot of perpendicular from P{P} to the line C{C}
OR=(OPd^)d^\overrightarrow{OR} = \left(\mathbf{\overrightarrow{OP}} \cdot \mathbf{\hat{d}}\right) \mathbf{\hat{d}}
OR=((121)(312)(312))(312)(312)\overrightarrow{OR} = \left( \frac{\begin{pmatrix} 1 \\ 2 \\ - 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ - 2 \end{pmatrix}}{\left| \begin{pmatrix} 3 \\ 1 \\ - 2 \end{pmatrix} \right|} \right) \frac{\begin{pmatrix} 3 \\ 1 \\ - 2 \end{pmatrix}}{\left| \begin{pmatrix} 3 \\ 1 \\ - 2 \end{pmatrix} \right|}
OR=714(312)\overrightarrow{OR} = \frac{7}{14} \begin{pmatrix} 3 \\ 1 \\ - 2 \end{pmatrix}
OR=(32121)\overrightarrow{OR} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \\ - 1 \end{pmatrix}
Coordinates of R(32,12,1)  {\displaystyle R \left( \frac{3}{2}, \frac{1}{2}, - 1 \right) \; \blacksquare}
PR=OROP=(12320)=12(130)\begin{align*} \overrightarrow{PR} &= \overrightarrow{OR} - \overrightarrow{OP} \\ &= \begin{pmatrix} \frac{1}{2} \\ - \frac{3}{2} \\ 0 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 1 \\ - 3 \\ 0 \end{pmatrix} \end{align*}
PR=12(130)=121+9+0=1210\begin{align*} \left| \overrightarrow{PR} \right| &= \left| \frac{1}{2} \begin{pmatrix} 1 \\ - 3 \\ 0 \end{pmatrix} \right | \\ &= \frac{1}{2} \sqrt{1 + 9 + 0} \\ &= \frac{1}{2} \sqrt{10} \end{align*}
Exact minimum length of PR{PR} is 1210 units2  {\frac{1}{2} \sqrt{10} \textrm{ units}^2 \; \blacksquare}