2016 H2 Mathematics Paper 1 Question 5

Vectors I: Basics, Dot and Cross Products

Answers

(2b4b4a2a){\begin{pmatrix}2b\\4b-4a\\-2a\end{pmatrix}}
(u+v)×(uv)=(2a8a2a) \left(\mathbf{u} + \mathbf{v}\right) \times \left(\mathbf{u} - \mathbf{v}\right) \allowbreak {= \begin{pmatrix}-2a\\-8a\\-2a\end{pmatrix}}
a=±1122{a=\pm\frac{1}{12} \sqrt{2}}
v=3{\left|\mathbf{v}\right| = 3}

Full solutions

(i)

(u+v)×(uv)=u×uu×v+v×uv×v=0u×vu×v+0=2u×v=2(212)×(a0b)=2(b(2b2a)a)=(2b4b4a2a)  \begin{align*} & \left(\mathbf{u} + \mathbf{v}\right) \times \left(\mathbf{u} - \mathbf{v}\right) \\ &= \mathbf{u} \times \mathbf{u} - \mathbf{u} \times \mathbf{v} + \mathbf{v} \times \mathbf{u} - \mathbf{v} \times \mathbf{v} \\ &= \mathbf{0} - \mathbf{u} \times \mathbf{v} - \mathbf{u} \times \mathbf{v} + \mathbf{0} \\ &= - 2 \mathbf{u} \times \mathbf{v} \\ &= -2 \begin{pmatrix} 2 \\ - 1 \\ 2 \end{pmatrix} \times \begin{pmatrix}a\\0\\b\end{pmatrix} \\ &= -2 \begin{pmatrix}-b\\-(2b-2a)\\a\end{pmatrix} \\ &= \begin{pmatrix}2b\\4b-4a\\-2a\end{pmatrix} \; \blacksquare \end{align*}

(ii)

Since the i-{\mathbf{i}\textrm{-}} and k-{\mathbf{k}\textrm{-}}components are equal,
2b=2ab=a\begin{align*} 2b &= -2a \\ b &= -a \end{align*}
(u+v)×(uv)=(2a8a2a)  \begin{align*} & \left(\mathbf{u} + \mathbf{v}\right) \times \left(\mathbf{u} - \mathbf{v}\right) \\ &= \begin{pmatrix}-2a\\-8a\\-2a\end{pmatrix} \; \blacksquare \end{align*}
If (u+v)×(uv){ \left(\mathbf{u} + \mathbf{v}\right) \times \left(\mathbf{u} - \mathbf{v}\right)} is a unit vector,
(u+v)×(uv)=1(2a8a2a)=12a(141)=12a18=1\begin{align*} \left| \left(\mathbf{u} + \mathbf{v}\right) \times \left(\mathbf{u} - \mathbf{v}\right) \right| &= 1 \\ \left|\begin{pmatrix}-2a\\-8a\\-2a\end{pmatrix} \right| &= 1 \\ \left|2a \begin{pmatrix}1\\4\\1\end{pmatrix} \right| &= 1 \\ \left|2a\right|\sqrt{18} &= 1 \\ \end{align*}
a=1218=1122a=±1122  \begin{align*} \left|a\right| &= \frac{1}{2\sqrt{18}} \\ &= \frac{1}{12} \sqrt{2} \\ a &= \pm \frac{1}{12} \sqrt{2} \; \blacksquare \end{align*}

(iii)

(u+v)(uv)=0uu+vuuvvv=0u2+uvuvv2=0\begin{align*} (\mathbf{u}+\mathbf{v})\cdot(\mathbf{u}-\mathbf{v}) &= 0 \\ \mathbf{u}\cdot\mathbf{u} + \mathbf{v}\cdot\mathbf{u} - \mathbf{u}\cdot\mathbf{v} - \mathbf{v}\cdot\mathbf{v} &= 0 \\ \left|\mathbf{u}\right|^2 + \mathbf{u}\cdot\mathbf{v} - \mathbf{u}\cdot\mathbf{v} - \left|\mathbf{v}\right|^2 &= 0 \\ \end{align*}
u2v2=0\left|\mathbf{u}\right|^2 - \left|\mathbf{v}\right|^2 = 0
v=u=(212)=4+1+4=3  \begin{align*} \left|\mathbf{v}\right| &= \left|\mathbf{u}\right| \\ &= \left|\begin{pmatrix} 2 \\ - 1 \\ 2 \end{pmatrix}\right| \\ &= \sqrt{4 + 1 + 4} \\ &= 3 \; \blacksquare \end{align*}