2016 H2 Mathematics Paper 2 Question 2

Integration Techniques

Answers

(ai)
1nx2sinnx+2n2xcosnx2n3sinnx+C{\frac{1}{n} x^{2} \sin nx}\allowbreak {+ \frac{2}{n^2}x \cos nx}\allowbreak {- \frac{2}{n^3} \sin nx + C}
(aii)
{2πn2 if n is even6πn2 if n is odd{\begin{cases} 2\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is even} \\ 6\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is odd} \\ \end{cases}}
12π(45+ln59) units3{\frac{1}{2} \pi \left( \frac{4}{5} + \ln \frac{5}{9} \right) \textrm{ units}^3}

Full solutions

(ai)
x2cosnx  dx=1nx2sinnx1n2xsinnx  dx=1nx2sinnx(1n22xcosnx1n22cosnx  dx)=1nx2sinnx+2n2xcosnx2n2cosnx  dx=1nx2sinnx+2n2xcosnx2n3sinnx+C  \begin{align*} & \int x^{2} \cos nx \; \mathrm{d}x \\ & = \frac{1}{n} x^{2} \sin nx - \int \frac{1}{n} 2 x \sin nx \; \mathrm{d}x \\ & = \frac{1}{n} x^{2} \sin nx - \left( -\frac{1}{n^2}2 x \cos nx - \int - \frac{1}{n^2} 2 \cos nx \; \mathrm{d}x \right) \\ & = \frac{1}{n} x^{2} \sin nx + \frac{2}{n^2}x \cos nx - \int \frac{2}{n^2} \cos nx \; \mathrm{d}x \\ & = \frac{1}{n} x^{2} \sin nx + \frac{2}{n^2}x \cos nx - \frac{2}{n^3} \sin nx + C \; \blacksquare \end{align*}
(aii)
π2πx2cosnx  dx=[1nx2sinnx+2n2xcosnx2n3sinnx]π2π=4π2nsin2nπ+4πn2cos2nπ2n3sin2nπ=+(π2nsinnπ+2πn2cosnπ2n3sinnπ)=0+4πn2(1)002πn2cosnπ0=4πn22πn2cosnπ={4πn22πn2(1) if n is even4πn22πn2(1) if n is odd={2πn2 if n is even6πn2 if n is odd  \begin{align*} & \int_\pi^{2\pi} x^{2} \cos nx \; \mathrm{d}x \\ & = \left[ \frac{1}{n} x^{2} \sin nx + \frac{2}{n^2}x \cos nx - \frac{2}{n^3} \sin nx \right]_\pi^{2\pi} \\ & = \frac{4\pi^2}{n} \sin 2n\pi + \frac{4\pi}{n^2} \cos 2n \pi - \frac{2}{n^3 \sin 2n\pi} \\ & \phantom{ = +} - \left( \frac{\pi^2}{n} \sin n\pi + \frac{2\pi}{n^2} \cos n \pi - \frac{2}{n^3 \sin n\pi} \right) \\ & = 0 + \frac{4\pi}{n^2}(1) - 0 - 0 - \frac{2\pi}{n^2} \cos n\pi - 0 \\ & = \frac{4\pi}{n^2} - \frac{2\pi}{n^2} \cos n\pi \\ & = \begin{cases} \frac{4\pi}{n^2} - \frac{2\pi}{n^2} (1) \quad &\textrm{ if } n \textrm{ is even} \\ \frac{4\pi}{n^2} - \frac{2\pi}{n^2} (-1) \quad &\textrm{ if } n \textrm{ is odd} \\ \end{cases} \\ & = \begin{cases} 2\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is even} \\ 6\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is odd} \\ \end{cases} \; \blacksquare \end{align*}

(b)

dudx=2x\frac{\mathrm{d}u}{\mathrm{d}x} = -2x
When x=0,  u=9.{x=0, \; u = 9. \quad}When x=2,  u=5{x=2, \; u = 5}
Volume of solid obtained=π02(xx9x2)2  dx=π95x3u212x  du=12π959uu2  du=12π599u21u  du=12π[9ulnu]59=12π(1ln9+95+ln5)=12π(45+ln59) units3  \begin{align*} & \textrm{Volume of solid obtained} \\ & = \pi \int_0^2 \left( \frac{x\sqrt{x}}{9-x^2} \right)^2 \; \mathrm{d}x \\ & = \pi \int_9^5 \frac{x^3}{u^2} \frac{1}{-2x} \; \mathrm{d}u \\ & = -\frac{1}{2} \pi \int_9^5 \frac{9-u}{u^2} \; \mathrm{d}u \\ & = \frac{1}{2} \pi \int_5^9 \frac{9}{u^2} - \frac{1}{u} \; \mathrm{d}u \\ & = \frac{1}{2} \pi \left[ - \frac{9}{u} - \ln \left|u\right| \right]_5^9 \\ & = \frac{1}{2} \pi \left( -1 - \ln 9 + \frac{9}{5} + \ln 5 \right) \\ & = \frac{1}{2} \pi \left( \frac{4}{5} + \ln \frac{5}{9} \right) \textrm{ units}^3 \; \blacksquare \end{align*}