2016 H2 Mathematics Paper 2 Question 2 Integration Techniques
Answers (ai)
1 n x 2 sin n x + 2 n 2 x cos n x − 2 n 3 sin n x + C {\frac{1}{n} x^{2} \sin nx}\allowbreak {+ \frac{2}{n^2}x \cos nx}\allowbreak {- \frac{2}{n^3} \sin nx + C} n 1 x 2 sin n x + n 2 2 x cos n x − n 3 2 sin n x + C (aii)
{ 2 π n 2 if n is even 6 π n 2 if n is odd {\begin{cases}
2\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is even} \\
6\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is odd} \\
\end{cases}} { 2 n 2 π 6 n 2 π if n is even if n is odd 1 2 π ( 4 5 + ln 5 9 ) units 3 {\frac{1}{2} \pi \left( \frac{4}{5} + \ln \frac{5}{9} \right) \textrm{ units}^3} 2 1 π ( 5 4 + ln 9 5 ) units 3 Full solutions (ai)
∫ x 2 cos n x d x = 1 n x 2 sin n x − ∫ 1 n 2 x sin n x d x = 1 n x 2 sin n x − ( − 1 n 2 2 x cos n x − ∫ − 1 n 2 2 cos n x d x ) = 1 n x 2 sin n x + 2 n 2 x cos n x − ∫ 2 n 2 cos n x d x = 1 n x 2 sin n x + 2 n 2 x cos n x − 2 n 3 sin n x + C ■ \begin{align*}
& \int x^{2} \cos nx \; \mathrm{d}x \\
& = \frac{1}{n} x^{2} \sin nx - \int \frac{1}{n} 2 x \sin nx \; \mathrm{d}x \\
& = \frac{1}{n} x^{2} \sin nx - \left( -\frac{1}{n^2}2 x \cos nx - \int - \frac{1}{n^2} 2 \cos nx \; \mathrm{d}x \right) \\
& = \frac{1}{n} x^{2} \sin nx + \frac{2}{n^2}x \cos nx - \int \frac{2}{n^2} \cos nx \; \mathrm{d}x \\
& = \frac{1}{n} x^{2} \sin nx + \frac{2}{n^2}x \cos nx - \frac{2}{n^3} \sin nx + C \; \blacksquare
\end{align*} ∫ x 2 cos n x d x = n 1 x 2 sin n x − ∫ n 1 2 x sin n x d x = n 1 x 2 sin n x − ( − n 2 1 2 x cos n x − ∫ − n 2 1 2 cos n x d x ) = n 1 x 2 sin n x + n 2 2 x cos n x − ∫ n 2 2 cos n x d x = n 1 x 2 sin n x + n 2 2 x cos n x − n 3 2 sin n x + C ■ (aii)
∫ π 2 π x 2 cos n x d x = [ 1 n x 2 sin n x + 2 n 2 x cos n x − 2 n 3 sin n x ] π 2 π = 4 π 2 n sin 2 n π + 4 π n 2 cos 2 n π − 2 n 3 sin 2 n π = + − ( π 2 n sin n π + 2 π n 2 cos n π − 2 n 3 sin n π ) = 0 + 4 π n 2 ( 1 ) − 0 − 0 − 2 π n 2 cos n π − 0 = 4 π n 2 − 2 π n 2 cos n π = { 4 π n 2 − 2 π n 2 ( 1 ) if n is even 4 π n 2 − 2 π n 2 ( − 1 ) if n is odd = { 2 π n 2 if n is even 6 π n 2 if n is odd ■ \begin{align*}
& \int_\pi^{2\pi} x^{2} \cos nx \; \mathrm{d}x \\
& = \left[ \frac{1}{n} x^{2} \sin nx + \frac{2}{n^2}x \cos nx - \frac{2}{n^3} \sin nx \right]_\pi^{2\pi} \\
& = \frac{4\pi^2}{n} \sin 2n\pi + \frac{4\pi}{n^2} \cos 2n \pi - \frac{2}{n^3 \sin 2n\pi} \\
& \phantom{ = +} - \left( \frac{\pi^2}{n} \sin n\pi + \frac{2\pi}{n^2} \cos n \pi - \frac{2}{n^3 \sin n\pi} \right) \\
& = 0 + \frac{4\pi}{n^2}(1) - 0 - 0 - \frac{2\pi}{n^2} \cos n\pi - 0 \\
& = \frac{4\pi}{n^2} - \frac{2\pi}{n^2} \cos n\pi \\
& = \begin{cases}
\frac{4\pi}{n^2} - \frac{2\pi}{n^2} (1) \quad &\textrm{ if } n \textrm{ is even} \\
\frac{4\pi}{n^2} - \frac{2\pi}{n^2} (-1) \quad &\textrm{ if } n \textrm{ is odd} \\
\end{cases} \\
& = \begin{cases}
2\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is even} \\
6\frac{\pi}{n^2} \quad &\textrm{ if } n \textrm{ is odd} \\
\end{cases} \; \blacksquare
\end{align*} ∫ π 2 π x 2 cos n x d x = [ n 1 x 2 sin n x + n 2 2 x cos n x − n 3 2 sin n x ] π 2 π = n 4 π 2 sin 2 nπ + n 2 4 π cos 2 nπ − n 3 sin 2 nπ 2 = + − ( n π 2 sin nπ + n 2 2 π cos nπ − n 3 sin nπ 2 ) = 0 + n 2 4 π ( 1 ) − 0 − 0 − n 2 2 π cos nπ − 0 = n 2 4 π − n 2 2 π cos nπ = { n 2 4 π − n 2 2 π ( 1 ) n 2 4 π − n 2 2 π ( − 1 ) if n is even if n is odd = { 2 n 2 π 6 n 2 π if n is even if n is odd ■
(b) d u d x = − 2 x \frac{\mathrm{d}u}{\mathrm{d}x} = -2x d x d u = − 2 x When
x = 0 , u = 9. {x=0, \; u = 9. \quad} x = 0 , u = 9. When
x = 2 , u = 5 {x=2, \; u = 5} x = 2 , u = 5 Volume of solid obtained = π ∫ 0 2 ( x x 9 − x 2 ) 2 d x = π ∫ 9 5 x 3 u 2 1 − 2 x d u = − 1 2 π ∫ 9 5 9 − u u 2 d u = 1 2 π ∫ 5 9 9 u 2 − 1 u d u = 1 2 π [ − 9 u − ln ∣ u ∣ ] 5 9 = 1 2 π ( − 1 − ln 9 + 9 5 + ln 5 ) = 1 2 π ( 4 5 + ln 5 9 ) units 3 ■ \begin{align*}
& \textrm{Volume of solid obtained} \\
& = \pi \int_0^2 \left( \frac{x\sqrt{x}}{9-x^2} \right)^2 \; \mathrm{d}x \\
& = \pi \int_9^5 \frac{x^3}{u^2} \frac{1}{-2x} \; \mathrm{d}u \\
& = -\frac{1}{2} \pi \int_9^5 \frac{9-u}{u^2} \; \mathrm{d}u \\
& = \frac{1}{2} \pi \int_5^9 \frac{9}{u^2} - \frac{1}{u} \; \mathrm{d}u \\
& = \frac{1}{2} \pi \left[ - \frac{9}{u} - \ln \left|u\right| \right]_5^9 \\
& = \frac{1}{2} \pi \left( -1 - \ln 9 + \frac{9}{5} + \ln 5 \right) \\
& = \frac{1}{2} \pi \left( \frac{4}{5} + \ln \frac{5}{9} \right) \textrm{ units}^3 \; \blacksquare
\end{align*} Volume of solid obtained = π ∫ 0 2 ( 9 − x 2 x x ) 2 d x = π ∫ 9 5 u 2 x 3 − 2 x 1 d u = − 2 1 π ∫ 9 5 u 2 9 − u d u = 2 1 π ∫ 5 9 u 2 9 − u 1 d u = 2 1 π [ − u 9 − ln ∣ u ∣ ] 5 9 = 2 1 π ( − 1 − ln 9 + 5 9 + ln 5 ) = 2 1 π ( 5 4 + ln 9 5 ) units 3 ■