Math Repository
about
topic
al
year
ly
Yearly
2016
P1 Q4
Topical
AP/GP
16 P1 Q4
2016 H2 Mathematics Paper 1 Question 4
Arithmetic and Geometric Progressions (APs, GPs)
Answers
(i)
r
=
0.74
{r=0.74}
r
=
0.74
(ii)
3.85
(
0.74
)
n
b
{3.85(0.74)^n b}
3.85
(
0.74
)
n
b
Full solutions
(i)
a
+
3
d
=
b
r
4
a
+
8
d
=
b
r
7
a
+
11
d
=
b
r
14
\begin{align} &&\quad a+3d &= br^{4} \\ &&\quad a+8d &= br^{7} \\ &&\quad a+11d &= br^{14} \\ \end{align}
a
+
3
d
a
+
8
d
a
+
11
d
=
b
r
4
=
b
r
7
=
b
r
14
Taking
(
2
)
−
(
1
)
{(2)-(1)}
(
2
)
−
(
1
)
,
5
d
=
b
r
7
−
b
r
4
\begin{equation}\qquad 5d = br^{7}-br^{4} \end{equation}
5
d
=
b
r
7
−
b
r
4
Taking
(
3
)
−
(
1
)
{(3)-(1)}
(
3
)
−
(
1
)
,
8
d
=
b
r
14
−
b
r
4
\begin{equation}\qquad 8d = br^{14}-br^{4} \end{equation}
8
d
=
b
r
14
−
b
r
4
From
(
4
)
{(4)}
(
4
)
and
(
5
)
{(5)}
(
5
)
,
b
r
7
−
b
r
4
5
=
b
r
14
−
b
r
4
8
8
b
r
7
−
8
b
r
4
=
5
b
r
14
−
5
b
r
4
5
b
r
14
−
8
b
r
7
+
3
b
r
4
=
0
5
r
10
−
8
r
3
+
3
=
0
■
\begin{gather*} \frac{br^{7}-br^{4}}{5} = \frac{br^{14}-br^{4}}{8} \\ 8br^{7}-8br^{4} = 5br^{14}-5br^{4} \\ 5br^{14} -8br^{7} + 3br^{4} = 0 \\ 5 r^{10} - 8 r^3 + 3 = 0 \; \blacksquare \end{gather*}
5
b
r
7
−
b
r
4
=
8
b
r
14
−
b
r
4
8
b
r
7
−
8
b
r
4
=
5
b
r
14
−
5
b
r
4
5
b
r
14
−
8
b
r
7
+
3
b
r
4
=
0
5
r
10
−
8
r
3
+
3
=
0
■
Solving with a GC, since
∣
r
∣
<
1
,
{|r|<1,}
∣
r
∣
<
1
,
r
=
0.74045
=
0.74
(2dp)
■
\begin{align*} r &= 0.74045 \\ &= 0.74 \textrm{ (2dp)} \; \blacksquare \end{align*}
r
=
0.74045
=
0.74
(2dp)
■
(ii)
Sum of terms after, but not including, the
n
{n}
n
th term
=
S
∞
−
S
n
=
b
1
−
r
−
b
(
1
−
r
n
)
1
−
r
=
b
r
n
1
−
r
=
b
(
0.74
)
n
1
−
0.74
=
3.85
(
0.74
)
n
b
■
\begin{align*} &= S_{\infty} - S_n \\ &= \frac{b}{1-r} - \frac{b(1-r^n)}{1-r} \\ &= \frac{br^n}{1-r} \\ &= \frac{b(0.74)^n}{1-0.74}\\ &= 3.85(0.74)^n b \; \blacksquare \end{align*}
=
S
∞
−
S
n
=
1
−
r
b
−
1
−
r
b
(
1
−
r
n
)
=
1
−
r
b
r
n
=
1
−
0.74
b
(
0.74
)
n
=
3.85
(
0.74
)
n
b
■
Back to top ▲