2016 H2 Mathematics Paper 1 Question 10

Functions

Answers

(ai)
f1(x)=(x1)2{f^{-1}(x)=(x-1)^2}
Df1=[1,){D_{f^{-1}}=[1,\infty)}
(aii)
x=2.62{x=2.62}
(bi)
g(4)=6{g(4)=6}
g(7)=8{g(7)=8}
g(12)=9{g(12)=9}
(bii)
g{g} does not have an inverse since g(8)=g(7){g(8)=g(7)} so g{g} is not a one-one function

Full solutions

(ai)
y=1+xx=y1x=(y1)2\begin{gather*} y = 1 + \sqrt{x} \\ \sqrt{x} = y - 1 \\ x = (y-1)^2 \end{gather*}
f1(x)=(x1)2  f^{-1}(x) = (x-1)^2 \; \blacksquare
Df1=Rf=[1,)  \begin{align*} D_{f^{-1}} &= R_f \\ &= [1 ,\infty) \; \blacksquare \end{align*}
(aii)
ff(x)=xf(1+x)=x1+1+x=x1+x=x11+x=(x1)2x=x22xx=(x22x)2x=x44x3+4x2x44x3+4x2x=0\begin{gather*} ff(x) = x \\ f(1+\sqrt{x}) = x \\ 1 + \sqrt{1+\sqrt{x}} = x \tag{*} \\ \sqrt{1 + \sqrt{x}} = x-1 \\ 1 + \sqrt{x} = (x-1)^2 \\ \sqrt{x} = x^2 - 2x \\ x = (x^2-2x)^2 \\ x = x^4 - 4x^3 + 4x^2 \\ x^4 - 4x^3 + 4x^2 - x = 0 \end{gather*}
Since x0,{x\neq 0,}
x34x2+4x1=0  x^3 - 4 x^2 + 4 x - 1=0 \; \blacksquare
Solving with a GC,
x=0.382orx=1orx=2.62\begin{align*} & x = 0.382 \\ \textrm{or} \quad & x = 1 \\ \textrm{or} \quad & x = 2.62 \\ \end{align*}
From (),{(*), } x>1{x > 1}
x=2.62  x=2.62 \; \blacksquare
From ff(x)=x,{ff(x)=x, } applying f1{f^{-1}} on both sides,
f1ff(x)=f1(x)f(x)=f1(x)  \begin{align*} f^{-1}ff(x) &= f^{-1}(x) \\ f(x) &= f^{-1}(x) \; \blacksquare \end{align*}
(bi)
g(4)=2+g(2)=2+2+g(1)=2+2+1+g(0)=2+2+1+1=6  \begin{align*} g(4) &= 2 + g(2) \\ &= 2 + 2 + g(1) \\ &= 2 + 2 + 1 + g(0) \\ &= 2 + 2 + 1 + 1 \\ &= 6 \; \blacksquare \end{align*}
g(7)=1+g(6)=1+2+g(3)=1+2+1+g(2)=1+2+1+2+1+1=8  \begin{align*} g(7) &= 1 + g(6) \\ &= 1 + 2 + g(3) \\ &= 1 + 2 + 1 + g(2) \\ &= 1 + 2 + 1 + 2 + 1 + 1 &= 8 \; \blacksquare \end{align*}
g(12)=2+g(6)=2+2+1+2+1+1=9  \begin{align*} g(12) &= 2 + g(6) \\ &= 2 + 2 + 1 + 2 + 1 + 1 \\ &= 9 \; \blacksquare \end{align*}
(bii)
g(8)=2+g(4)=2+6=8=g(7)\begin{align*} g(8) &= 2 + g(4) \\ &= 2 + 6 \\ &= 8 \\ &= g(7) \end{align*}
Since g(8)=g(7)=8,{g(8)=g(7)=8, } g{g} is not a one-one function so g{g} does not have an inverse {\blacksquare}