Math Repository
about
topic
al
year
ly
Yearly
2016
P2 Q9
Topical
Binomial
16 P2 Q9
Topical
Normal
16 P2 Q9
2016 H2 Mathematics Paper 2 Question 9
The Binomial Distribution
The Normal Distribution
Answers
(a)
7.41
{7.41}
7.41
(b)
p
=
0.166
or
p
=
0.599
{p=0.166 \textrm{ or } p = 0.599}
p
=
0.166
or
p
=
0.599
(c)
Out of syllabus
Full solutions
(a)
X
∼
N
(
15
,
a
2
)
Z
=
X
−
15
a
∼
N
(
0
,
1
)
\begin{gather*} X \sim \mathrm{N}(15, a^2) \\ Z = \frac{X-15}{a} \sim \mathrm{N}(0, 1) \end{gather*}
X
∼
N
(
15
,
a
2
)
Z
=
a
X
−
15
∼
N
(
0
,
1
)
P
(
10
<
X
<
20
)
=
0.5
P
(
10
−
15
a
<
Z
<
20
−
15
a
)
=
0.5
P
(
−
5
a
<
Z
<
5
a
)
=
0.5
\begin{gather*} \mathrm{P}(10 < X < 20) = 0.5 \\ \mathrm{P}\left(\frac{10-15}{a} < Z < \frac{20-15}{a}\right) = 0.5 \\ \mathrm{P}\left(-\frac{5}{a} < Z < \frac{5}{a}\right) = 0.5 \\ \end{gather*}
P
(
10
<
X
<
20
)
=
0.5
P
(
a
10
−
15
<
Z
<
a
20
−
15
)
=
0.5
P
(
−
a
5
<
Z
<
a
5
)
=
0.5
5
a
=
0.67449
a
=
7.41
(3 sf)
■
\begin{align*} \frac{5}{a} &= 0.67449 \\ a &= 7.41 \textrm{ (3 sf)} \; \blacksquare \end{align*}
a
5
a
=
0.67449
=
7.41
(3 sf)
■
(b)
P
(
Y
=
1
)
+
P
(
Y
=
2
)
=
0.5
(
4
1
)
p
1
(
1
−
p
)
3
+
(
4
2
)
p
2
(
1
−
p
)
2
=
0.5
4
p
(
1
−
3
p
2
+
3
p
−
p
3
)
+
6
p
2
(
1
−
2
p
+
p
2
)
=
0.5
4
p
−
12
p
2
+
12
p
3
−
4
p
4
+
6
p
2
−
12
p
3
+
6
p
4
=
0.5
\begin{gather*} \mathrm{P}(Y=1) + \mathrm{P}(Y=2) = 0.5 \\ {4 \choose 1}p^1(1-p)^3 + {4 \choose 2}p^2(1-p)^2 = 0.5 \\ 4p(1-3p^2+3p-p^3) + 6p^2(1-2p+p^2) = 0.5 \\ 4p-12p^2+12p^3-4p^4 + 6p^2-12p^3+6p^4 = 0.5 \\ \end{gather*}
P
(
Y
=
1
)
+
P
(
Y
=
2
)
=
0.5
(
1
4
)
p
1
(
1
−
p
)
3
+
(
2
4
)
p
2
(
1
−
p
)
2
=
0.5
4
p
(
1
−
3
p
2
+
3
p
−
p
3
)
+
6
p
2
(
1
−
2
p
+
p
2
)
=
0.5
4
p
−
12
p
2
+
12
p
3
−
4
p
4
+
6
p
2
−
12
p
3
+
6
p
4
=
0.5
2
p
4
−
6
p
2
+
4
p
=
0.5
4
p
4
−
12
p
2
+
8
p
=
1
■
\begin{gather*} 2p^4 - 6 p^2 + 4p = 0.5 \\ 4 p^4 - 12 p^2 + 8 p = 1 \; \blacksquare \end{gather*}
2
p
4
−
6
p
2
+
4
p
=
0.5
4
p
4
−
12
p
2
+
8
p
=
1
■
Solving with a GC, since
0
≤
p
≤
1
,
{0 \leq p \leq 1,}
0
≤
p
≤
1
,
p
=
0.166
or
p
=
0.599
(3 sf)
■
p=0.166 \; \textrm{ or } \; p=0.599 \textrm{ (3 sf)} \; \blacksquare
p
=
0.166
or
p
=
0.599
(3 sf)
■
(c)
Out of syllabus
Back to top ▲