2016 H2 Mathematics Paper 2 Question 9

The Binomial Distribution
The Normal Distribution

Answers

7.41{7.41}
p=0.166 or p=0.599{p=0.166 \textrm{ or } p = 0.599}
Out of syllabus

Full solutions

(a)

XN(15,a2)Z=X15aN(0,1)\begin{gather*} X \sim \mathrm{N}(15, a^2) \\ Z = \frac{X-15}{a} \sim \mathrm{N}(0, 1) \end{gather*}
P(10<X<20)=0.5P(1015a<Z<2015a)=0.5P(5a<Z<5a)=0.5\begin{gather*} \mathrm{P}(10 < X < 20) = 0.5 \\ \mathrm{P}\left(\frac{10-15}{a} < Z < \frac{20-15}{a}\right) = 0.5 \\ \mathrm{P}\left(-\frac{5}{a} < Z < \frac{5}{a}\right) = 0.5 \\ \end{gather*}
5a=0.67449a=7.41 (3 sf)  \begin{align*} \frac{5}{a} &= 0.67449 \\ a &= 7.41 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(b)

P(Y=1)+P(Y=2)=0.5(41)p1(1p)3+(42)p2(1p)2=0.54p(13p2+3pp3)+6p2(12p+p2)=0.54p12p2+12p34p4+6p212p3+6p4=0.5\begin{gather*} \mathrm{P}(Y=1) + \mathrm{P}(Y=2) = 0.5 \\ {4 \choose 1}p^1(1-p)^3 + {4 \choose 2}p^2(1-p)^2 = 0.5 \\ 4p(1-3p^2+3p-p^3) + 6p^2(1-2p+p^2) = 0.5 \\ 4p-12p^2+12p^3-4p^4 + 6p^2-12p^3+6p^4 = 0.5 \\ \end{gather*}
2p46p2+4p=0.54p412p2+8p=1  \begin{gather*} 2p^4 - 6 p^2 + 4p = 0.5 \\ 4 p^4 - 12 p^2 + 8 p = 1 \; \blacksquare \end{gather*}
Solving with a GC, since 0p1,{0 \leq p \leq 1,}
p=0.166   or   p=0.599 (3 sf)  p=0.166 \; \textrm{ or } \; p=0.599 \textrm{ (3 sf)} \; \blacksquare

(c)

Out of syllabus