2012 H2 Mathematics Paper 2 Question 4

Arithmetic and Geometric Progressions (APs, GPs)

Answers

24{24} months. 1 December 2002
20100(1.005n1){20100(1.005^n-1)}
45{45} months. September 2004
1.80%{1.80\%}

Full solutions

(i)

Sn>5000n2(2a+(n1)d)>5000n2(2(100)+(n1)(10))>50005n2+95n5000>0\begin{gather*} S_n > 5000 \\ \frac{n}{2} \Big( 2a + \left( n - 1 \right) d \Big) > 5000 \\ \frac{n}{2}\Big(2(100) + (n-1)(10)\Big) > 5000 \\ 5 n^2 + 95 n - 5000 > 0 \\ \end{gather*}
n>23.52   or   n<42.52 (NA) {n > 23.52} \; \allowbreak \textrm{ or } \; \allowbreak {n < -42.52 \textrm{ (NA)}}
Hence least n=24{n=24}
Account first becomes greater than $5000 on 1 December 2002 {\blacksquare}

(ii)

Considering the total amount in his account:
Start of 1{1}st month:
100100
End of 1{1}st month:
100(1.005)100(1.005)
Start of 2{2}nd month:
100(1.005)+100100(1.005)+100
End of 2{2}nd month:
100(1.005)2+100(1.005)100(1.005)^2+100(1.005)
Start of 3{3}rd month:
100(1.005)2+100(1.005)+100100(1.005)^2+100(1.005)+100
End of 3{3}rd month:
100(1.005)3+100(1.005)2+100(1.005)100(1.005)^3+100(1.005)^2+100(1.005)
{\quad \cdots}
End of n{n}th month:
100(1.005)n+100(1.005)n1++100(1.005)100(1.005)^n+100(1.005)^{n-1}+\ldots+100(1.005)
This form a geometric series with first term a=100(1.005){a=100(1.005)} and common ratio r=1.005{r=1.005}
Value of account on the last day of nth{n\textrm{th}} month
Sn=a(1rn)1r=100(1.005)(11.005n)11.005=20100(1.005n1)  \begin{align*} S_n &= \frac{a\left(1-r^{n}\right)}{1-r} \\ &= \frac{100(1.005)(1-1.005^n)}{1-1.005} \\ &= 20100(1.005^n-1) \; \blacksquare \end{align*}
When it is greater than $5000,
20100(1.005n1)>500020100(1.005^n-1) > 5000
1.005n1>502011.005n>251201n>ln251201ln1.005n>44.54\begin{align*} 1.005^n - 1 &> \frac{50}{201} \\ 1.005^n &> \frac{251}{201} \\ n &> \frac{\ln \frac{251}{201}}{\ln 1.005} \\ n &> 44.54 \end{align*}
Least n=45{n=45}
Account will first be greater than $5000 in September 2004 {\blacksquare}

(iii)

We will replace 1.005{1.005} in the working in (ii) with x{x}
For the account to be $5000 on 2 December 2003, it will be 5000x{5000x} on 31st December 2003 (end of 36 months)
Sn=5000xa(1rn)1r=5000x100x(1x36)1x=5000x\begin{align*} S_n &= 5000x \\ \frac{a\left(1-r^{n}\right)}{1-r} &= 5000x \\ \frac{100x(1-x^{36})}{1-x} &= 5000x \\ \end{align*}
Solving with a GC, x=1.01796{x=1.01796}
Hence the interest rate must be 1.80%  {1.80\% \; \blacksquare}