2012 H2 Mathematics Paper 2 Question 9

The Binomial Distribution

Answers

  • The probability of a voter supporting the Alliance Party is the same for each voter
  • Whether a voter supports the Alliance Party is independent of any other voter
0.373{0.373}
Out of syllabus
k=0.23790{k=0.23790}
p=0.39{p=0.39}

Full solutions

(i)

  • The probability of a voter supporting the Alliance Party is the same for each voter
  • Whether a voter supports the Alliance Party is independent of any other voter

(ii)

AB(30,0.15)A \sim \textrm{B}\left(30, 0.15\right)
P(A=3 or 4)=P(A=3)+P(A=4)=0.17026+0.20281=0.373 (3 sf)  \begin{align*} & \mathrm{P}(A=3 \textrm{ or } 4) \\ & = \mathrm{P}(A=3) + \mathrm{P}(A=4) \\ & = 0.17026 + 0.20281 \\ & = 0.373 \textrm{ (3 sf)} \; \blacksquare \end{align*}

(iii)

Out of syllabus

(iv)

P(A=15)=0.06864(3015)3015(1p)3015=0.06864155,117,520p15(1p)15=0.06864p(1p)=(0.06864155,117,520)115\begin{gather*} \mathrm{P}(A=15) = 0.06864 \\ {30 \choose 15} 30^{15} (1-p)^{30-15} = 0.06864 \\ 155,117,520 p^{15} (1-p)^{15} = 0.06864 \\ p(1-p) = \left( \frac{0.06864}{155,117,520} \right)^{\frac{1}{15}} \\ \end{gather*}
p(1p)=0.23790  p(1-p) = 0.23790 \; \blacksquare
p2p+0.23790=0p^2 - p + 0.23790 = 0
Since p<0.5,{p<0.5, } using a GC,
p=0.39 (3 sf)  p=0.39 \textrm{ (3 sf)} \; \blacksquare