2012 H2 Mathematics Paper 1 Question 5

Vectors I: Basics, Dot and Cross Products

Answers

μ=6{\mu = 6}
C(5,7,1) or C(173,193,53)C \left( 5, 7, 1 \right) \allowbreak \textrm{ or } \allowbreak C \left( \frac{17}{3}, \frac{19}{3}, \frac{5}{3} \right)

Full solutions

(i)

 area of OAC=12612OA×OC=126a×(λa+μb)=2126\begin{align*} \textrm{ area of } \triangle OAC &= \sqrt{126} \\ \frac{1}{2} \left| \overrightarrow{OA} \times \overrightarrow{OC} \right| &= \sqrt{126} \\ \left| \mathbf{a} \times (\lambda \mathbf{a} + \mu \mathbf{b}) \right |&= 2 \sqrt{126} \\ \end{align*}
λ(a×a)+μ(a×b)=2126μ(111)×(120)=2126\begin{align*} \left| \lambda (\mathbf{a}\times\mathbf{a}) + \mu (\mathbf{a}\times\mathbf{b}) \right |&= 2 \sqrt{126} \\ \left| \mu \begin{pmatrix} 1 \\ - 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right | &= 2 \sqrt{126} \\ \end{align*}
μ(213)=2126μ4+1+9=2126μ=6\begin{align*} \left| \mu \begin{pmatrix} - 2 \\ 1 \\ 3 \end{pmatrix} \right | &= 2 \sqrt{126} \\ \left|\mu\right| \sqrt{4 + 1 + 9} &= 2 \sqrt{126} \\ \left|\mu\right| &= 6 \\ \end{align*}
Since μ{\mu} is positive, μ=6  {\mu = 6 \; \blacksquare}

(ii)

Using μ=4,{\mu = 4,}
OC=λ(111)+4(120)=(λ+4λ+8λ)\begin{align*} \overrightarrow{OC} &= \lambda \begin{pmatrix} 1 \\ - 1 \\ 1 \end{pmatrix} + 4 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} \lambda + 4 \\ - \lambda + 8 \\ \lambda \end{pmatrix} \end{align*}
OC=533λ28λ+80=533λ28λ+80=753λ28λ+5=0(λ1)(3λ5)=0\begin{align*} \left | \overrightarrow{OC} \right| &= 5 \sqrt{3} \\ \sqrt{3 \lambda^2 - 8 \lambda + 80} &= 5 \sqrt{3} \\ 3 \lambda^2 - 8 \lambda + 80 &= 75 \\ 3 \lambda^2 - 8 \lambda + 5 &= 0 \\ (\lambda - 1)(3 \lambda - 5) &= 0 \\ \end{align*}
λ=1 or λ=53\lambda = 1 \textrm{ or } \lambda = \frac{5}{3}
OC=(571) or OC=(17319353)\overrightarrow{OC} = \begin{pmatrix} 5 \\ 7 \\ 1 \end{pmatrix} \textrm{ or } \overrightarrow{OC} = \begin{pmatrix} \frac{17}{3} \\ \frac{19}{3} \\ \frac{5}{3} \end{pmatrix}
Possible coordinates of C:{C:} (5,7,1)    (173,193,53)  {\displaystyle \left( 5, 7, 1 \right) \; \blacksquare \; \left( \frac{17}{3}, \frac{19}{3}, \frac{5}{3} \right) \; \blacksquare}