Math Repository
about
topic
al
year
ly
Yearly
2012
P2 Q7
Topical
P&C
12 P2 Q7
2012 H2 Mathematics Paper 2 Question 7
Permutations and Combinations (P&C)
Answers
(i)
2
15
{\frac{2}{15}}
15
2
(ii)
34
35
{\frac{34}{35}}
35
34
(iii)
2
455
{\frac{2}{455}}
455
2
(iv)
43
273
{\frac{43}{273}}
273
43
(v)
1
7
{\frac{1}{7}}
7
1
Full solutions
(i)
Let
S
{S}
S
denote the event that the sisters are next to each other
P
(
S
)
=
14
!
×
2
!
15
!
=
2
15
■
\begin{align*} \textrm{P}\left(S\right) &= \frac{14! \times 2!}{15!} \\ &= \frac{2}{15} \; \blacksquare \end{align*}
P
(
S
)
=
15
!
14
!
×
2
!
=
15
2
■
(ii)
Let
B
{B}
B
denote the event that all the brothers are next to one another
P
(
B
′
)
=
1
−
P
(
B
)
=
13
!
×
3
!
15
!
=
34
35
■
\begin{align*} \textrm{P}\left(B'\right) &= 1 - \textrm{P}\left(B\right) \\ &= \frac{13! \times 3!}{15!} \\ &= \frac{34}{35} \; \blacksquare \end{align*}
P
(
B
′
)
=
1
−
P
(
B
)
=
15
!
13
!
×
3
!
=
35
34
■
(iii)
P
(
S
∩
B
)
=
12
!
×
3
!
×
2
!
15
!
=
2
455
■
\begin{align*} & \textrm{P}\left(S \cap B\right) \\ &= \frac{12! \times 3! \times 2!}{15!} \\ &= \frac{2}{455} \; \blacksquare \end{align*}
P
(
S
∩
B
)
=
15
!
12
!
×
3
!
×
2
!
=
455
2
■
(iv)
P
(
S
∪
B
)
=
P
(
S
)
+
P
(
B
)
−
P
(
S
∩
B
)
=
2
15
+
1
35
−
2
455
=
43
273
■
\begin{align*} & \textrm{P}\left(S \cup B\right) \\ & = \textrm{P}\left(S\right) + \textrm{P}\left(B\right) - \textrm{P}\left(S \cap B\right) \\ &= \frac{2}{15} + \frac{1}{35} - \frac{2}{455} \\ &= \frac{43}{273} \; \blacksquare \end{align*}
P
(
S
∪
B
)
=
P
(
S
)
+
P
(
B
)
−
P
(
S
∩
B
)
=
15
2
+
35
1
−
455
2
=
273
43
■
(v)
Probability required
=
13
!
×
2
!
14
!
=
1
7
■
\begin{align*} &= \frac{13! \times 2!}{14!} \\ &= \frac{1}{7} \; \blacksquare \end{align*}
=
14
!
13
!
×
2
!
=
7
1
■
Back to top ▲