2012 H2 Mathematics Paper 2 Question 3

Graphs and Transformations

Answers

x=2{x=2}
x=1{x=-1}
x3+x22x4=4{x^3 + x^2 - 2 x - 4=4}
x3+x22x4=4{x^3 + x^2 - 2 x - 4=-4}
x=0,{x=0, } x=2,{x=- 2, } x=1,{x=1, } x=1{x=1}

Full solutions

(i)

(ii)

f(2)=23+222(2)4=8+444=4\begin{align*} & f(2) \\ & = 2^3 + 2^2 - 2(2) - 4 \\ & = 8 + 4 - 4 - 4 \\ & = 4 \end{align*}
Hence the integer solution to f(x)=4{f(x)=4} is
x=2  x=2 \; \blacksquare
x3+x22x8=(x2)(ax2+bx+c)x^3 + x^2 - 2 x - 8=(x - 2)(ax^2+bx+c)
Comparing coefficients,
x3:a=1x0:2c=8c=4x2:2a+b=1b=3\begin{align*} &x^3:& a &= 1 \\ &x^0:& -2c &= -8 \\ && c &= 4 \\ &x^2:& -2a+b &= 1 \\ && b &= 3 \end{align*}
f(x)4=(x2)(x2+3x+4)f(x)-4=(x - 2)(x^2 + 3 x + 4)
Discriminant for x2+3x+4:{x^2 + 3 x + 4:}
b24ac=324(1)(4)=7\begin{align*} & b^2 - 4ac \\ & = 3^2 - 4(1)(4) \\ & = -7 \end{align*}
Since b24ac<0,{b^2-4ac<0,} x2+3x+4=0{x^2 + 3 x + 4=0} has no real roots. Hence there are no other real solutions to the equation f(x)=4  {f(x)=4 \; \blacksquare}

(iii)

Replacing x{x} with x+3{x+3} in part (ii),
x+3=2x=1  \begin{align*} x+3 &= 2 \\ x &= -1 \; \blacksquare \end{align*}

(iv)

(v)

Two cubic equations that give the roots of the equation f(x)=4:{|f(x)|=4:}
x3+x22x4=4  x3+x22x4=4  \begin{align} && \quad x^3 + x^2 - 2 x - 4 = 4 \; \blacksquare \\ && \quad x^3 + x^2 - 2 x - 4 = -4 \; \blacksquare \\ \end{align}
x3+x22x4=4x3+x22x8=0x(x2+x2)=0x(x+2)(x1)=0\begin{align*} x^3 + x^2 - 2 x - 4 &= -4 \\ x^3 + x^2 - 2 x - 8 &= 0 \\ x(x^2 + x - 2) &= 0 \\ x(x + 2)(x - 1) &= 0 \\ \end{align*}
Combining with the solution x=2{x=2} from part (ii),
x=0  orx=2  orx=1  orx=1  \begin{align*} && x &= 0 \; \blacksquare \\ &\textrm{or}& x &= - 2 \; \blacksquare \\ &\textrm{or}& x &= 1 \; \blacksquare \\ &\textrm{or}& x &= 1 \; \blacksquare \\ \end{align*}