2022 H2 Mathematics Paper 1 Question 4

Integration Techniques

Answers

193.\frac{1}{9} \sqrt{3}.

Full solutions

(a)

ddx(cotx)=ddx(tanx)1=(tanx)2sec2x=cos2xsin2x1cos2x=1sin2x=cosec2x  \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left( \cot x \right) &= \frac{\mathrm{d}}{\mathrm{d}x} \left( \tan x \right)^{-1} \\ &= - \left( \tan x \right)^{-2} \sec^2 x \\ &= - \frac{\cos^2 x}{\sin^2 x} \cdot \frac{1}{\cos^2 x} \\ &= - \frac{1}{\sin^2 x} \\ &= - \cosec^2 x \; \blacksquare \end{align*}

(b)

sin2xtanx=(2sinxcosx)sinxcosx=2sin2x  \begin{align*} \sin 2x \tan x &= (2 \sin x \cos x ) \cdot \frac{\sin x}{\cos x} \\ &= 2 \sin^2 x \; \blacksquare \end{align*}

(c)

118π19πcosec6xcot3xdx=118π19π1sin6xtan3xdx=118π19π12sin23xdx=12118π19πcosec23xdx=12[cot3x3]118π19π=16(1tan13π1tan16π)=16(133)=193  \begin{align*} & \int_{\frac{1}{18} \pi}^{\frac{1}{9} \pi} \cosec 6x \cot 3x \mathop{\mathrm{d}x} \\ &= \int_{\frac{1}{18} \pi}^{\frac{1}{9} \pi} \frac{1}{\sin 6x \tan 3x} \mathop{\mathrm{d}x} \\ &= \int_{\frac{1}{18} \pi}^{\frac{1}{9} \pi} \frac{1}{2 \sin^2 3x} \mathop{\mathrm{d}x} \\ &= \frac{1}{2} \int_{\frac{1}{18} \pi}^{\frac{1}{9} \pi} \cosec^2 3x \mathop{\mathrm{d}x} \\ &= -\frac{1}{2} \Biggl[ \frac{\cot 3x}{3} \Biggr]_{\frac{1}{18} \pi}^{\frac{1}{9} \pi} \\ &= -\frac{1}{6} \left( \frac{1}{\tan \frac{1}{3} \pi} - \frac{1}{\tan \frac{1}{6} \pi} \right) \\ &= -\frac{1}{6} \left( \frac{1}{\sqrt{3}} - \sqrt{3} \right) \\ &= \frac{1}{9} \sqrt{3} \; \blacksquare \end{align*}

Question Commentary

For part (a), if we used the relationship that co-tangent is the reciprocal of tangent, we have to be careful not to confuse this reciprocal 1tanx=(tanx)1{\frac{1}{\tan x} = (\tan x)^{-1}} with the inverse tangent function tan1x.{\tan^{-1} x.}

Solving part (c) could also be challenging as it involves using both parts (a) and (b). Learning to pick up on the "hence" hint and being able to piece together how the two parts can be used are vital in getting the answer.