2022 H2 Mathematics Paper 2 Question 4

Sigma Notation

Answers

19r319r+6.{\frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 }.}
2m+1(9m+2)(3m1).{\frac{2 m + 1}{(9 m + 2)(3 m - 1)}.}
16.{\frac{1}{6}.}
Smallest n=28.{n = 28.}

Full solutions

(a)

19r2+3r2=1(3r1)(3r+2)1(3r1)(3r+2)=A3r1+B3r+2\begin{align*} \frac{1}{9 r^2 + 3 r - 2} &= \frac{1}{(3 r - 1)(3 r + 2)} \\ \frac{1}{(3 r - 1)(3 r + 2)} &= \frac{A}{3 r - 1} + \frac{B}{3 r + 2} \end{align*}
By the cover-up rule,
A=13(13)+2=13B=13(23)1=13\begin{align*} A &= \frac{1}{3\left(\frac{1}{3}\right) + 2} \\ &= \frac{1}{3} \\ B &= \frac{1}{3\left(- \frac{2}{3}\right) - 1} \\ &= - \frac{1}{3} \end{align*}
Hence
19r2+3r2=13(3r1)13(3r+2)=19r319r+6  \begin{align*} \frac{1}{9 r^2 + 3 r - 2} &= \frac{1}{3(3 r - 1)} - \frac{1}{3(3 r + 2)} \\ &= \frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 } \; \blacksquare \end{align*}

(b)

r=m3m19r2+3r2=r=m3m(19r319r+6)=19m319m+6+19m+619m+15+19m+1519m+24++127m21127m12+127m12127m3+127m3127m+6=19m3127m+6=27m+6(9m3)9(3m1)(9m+2)=2m+1(3m1)(9m+2)  \begin{align*} & \sum_{r=m}^{3m} \frac{1}{9 r^2 + 3 r - 2} \\ & = \sum_{r=m}^{3m} \left( \frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 } \right) \\ & = \def\arraystretch{1.5} \begin{array}{lclc} & \frac{ 1 }{ 9 m - 3 } &-& \cancel{\frac{ 1 }{ 9 m + 6 }} \\ + & \cancel{\frac{ 1 }{ 9 m + 6 }} &-& \cancel{\frac{ 1 }{ 9 m + 15 }} \\ + & \cancel{\frac{ 1 }{ 9 m + 15 }} &-& \cancel{\frac{ 1 }{ 9 m + 24 }} \\ + & & \cdots & \\ + & \cancel{\frac{ 1 }{ 27 m - 21 }} &-& \cancel{\frac{ 1 }{ 27 m - 12 }} \\ + & \cancel{\frac{ 1 }{ 27 m - 12 }} &-& \cancel{\frac{ 1 }{ 27 m - 3 }} \\ + & \cancel{\frac{ 1 }{ 27 m - 3 }} &-& \frac{ 1 }{ 27 m + 6 } \\ \end{array} \\ &= \frac{ 1 }{ 9 m - 3 } - \frac{ 1 }{ 27 m + 6 } \\ &= \frac{27m+6 - (9m-3)}{9(3m-1)(9m+2)} \\ &= \frac{2m+1}{(3m-1)(9m+2)} \; \blacksquare \end{align*}

(c)

r=1n19r2+3r2=r=1n(19r319r+6)=16115115124++19n1219n3+19n319n+6=1619n+6\begin{align*} & \sum_{r=1}^{n} \frac{1}{9 r^2 + 3 r - 2} \\ & = \sum_{r=1}^{n} \left( \frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 } \right) \\ & = \def\arraystretch{1.5} \begin{array}{lclc} & \frac{1}{6} &-& \cancel{\frac{1}{15}} \\ & \cancel{\frac{1}{15}} &-& \cancel{\frac{1}{24}} \\ + & & \cdots & \\ + & \cancel{\frac{ 1 }{ 9 n - 12 }} &-& \cancel{\frac{ 1 }{ 9 n - 3 }} \\ + & \cancel{\frac{ 1 }{ 9 n - 3 }} &-& \frac{ 1 }{ 9 n + 6 } \\ \end{array} \\ &= \frac{1}{6} - \frac{ 1 }{ 9 n + 6 } \end{align*}
As n,{n \to \infty,} 19n+6.{\frac{ - 1 }{ 9 n + 6 } \to \infty.}
r=119r2+3r2=16  \sum_{r=1}^\infty \frac{1}{9 r^2 + 3 r - 2} = \frac{1}{6} \; \blacksquare

(d)

r=1(19r2+3r2)r=1n(19r2+3r2)<0.00416(1619n+6)<0.00419n+6<1250\begin{gather*} \left| \sum_{r=1}^\infty \left( \frac{1}{9 r^2 + 3 r - 2} \right) - \sum_{r=1}^n \left( \frac{1}{9 r^2 + 3 r - 2} \right) \right| < 0.004 \\ \left| \frac{1}{6} - \left( \frac{1}{6} - \frac{ 1 }{ 9 n + 6 } \right) \right| < 0.004 \\ \frac{1}{9n+6} < \frac{1}{250} \end{gather*}
Since 9n+6>0,{9n+6 > 0,}
9n+6>250n>2449\begin{align*} 9 n + 6 &> 250 \\ n &> \frac{244}{9} \end{align*}
Smallest n=28  \textrm{Smallest } n = 28 \; \blacksquare

Question Commentary

The method of differences approach via partial fractions came out again (having appeared in 2021 Paper 1 Question 5 and 2019 Paper 1 Question 6).

I find the 1 mark allocated for part (c) interesting though. While not tough as we just have to do the same method of differences as in part (b) (and it's even easier to manage with the more common r=1{r=1} starting index) and then let n{n} approach infinity, that seems like quite a bit of work (in the small space provided) for the 1 mark.

I have tried to look at others' attempt at this but have not found a drastically more elegant alternative yet.