Answers 1 9 r − 3 − 1 9 r + 6 . {\frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 }.} 9 r − 3 1 − 9 r + 6 1 . 2 m + 1 ( 9 m + 2 ) ( 3 m − 1 ) . {\frac{2 m + 1}{(9 m + 2)(3 m - 1)}.} ( 9 m + 2 ) ( 3 m − 1 ) 2 m + 1 . Smallest
n = 28. {n = 28.} n = 28. Full solutions
(a) 1 9 r 2 + 3 r − 2 = 1 ( 3 r − 1 ) ( 3 r + 2 ) 1 ( 3 r − 1 ) ( 3 r + 2 ) = A 3 r − 1 + B 3 r + 2 \begin{align*}
\frac{1}{9 r^2 + 3 r - 2} &= \frac{1}{(3 r - 1)(3 r + 2)} \\
\frac{1}{(3 r - 1)(3 r + 2)} &= \frac{A}{3 r - 1} + \frac{B}{3 r + 2}
\end{align*} 9 r 2 + 3 r − 2 1 ( 3 r − 1 ) ( 3 r + 2 ) 1 = ( 3 r − 1 ) ( 3 r + 2 ) 1 = 3 r − 1 A + 3 r + 2 B
By the cover-up rule,
A = 1 3 ( 1 3 ) + 2 = 1 3 B = 1 3 ( − 2 3 ) − 1 = − 1 3 \begin{align*}
A &= \frac{1}{3\left(\frac{1}{3}\right) + 2}
\\ &= \frac{1}{3}
\\ B &= \frac{1}{3\left(- \frac{2}{3}\right) - 1}
\\ &= - \frac{1}{3}
\end{align*} A B = 3 ( 3 1 ) + 2 1 = 3 1 = 3 ( − 3 2 ) − 1 1 = − 3 1
Hence
1 9 r 2 + 3 r − 2 = 1 3 ( 3 r − 1 ) − 1 3 ( 3 r + 2 ) = 1 9 r − 3 − 1 9 r + 6 ■ \begin{align*}
\frac{1}{9 r^2 + 3 r - 2} &= \frac{1}{3(3 r - 1)} - \frac{1}{3(3 r + 2)}
\\ &= \frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 } \; \blacksquare
\end{align*} 9 r 2 + 3 r − 2 1 = 3 ( 3 r − 1 ) 1 − 3 ( 3 r + 2 ) 1 = 9 r − 3 1 − 9 r + 6 1 ■
(b) ∑ r = m 3 m 1 9 r 2 + 3 r − 2 = ∑ r = m 3 m ( 1 9 r − 3 − 1 9 r + 6 ) = 1 9 m − 3 − 1 9 m + 6 + 1 9 m + 6 − 1 9 m + 15 + 1 9 m + 15 − 1 9 m + 24 + ⋯ + 1 27 m − 21 − 1 27 m − 12 + 1 27 m − 12 − 1 27 m − 3 + 1 27 m − 3 − 1 27 m + 6 = 1 9 m − 3 − 1 27 m + 6 = 27 m + 6 − ( 9 m − 3 ) 9 ( 3 m − 1 ) ( 9 m + 2 ) = 2 m + 1 ( 3 m − 1 ) ( 9 m + 2 ) ■ \begin{align*}
& \sum_{r=m}^{3m} \frac{1}{9 r^2 + 3 r - 2} \\
& = \sum_{r=m}^{3m} \left( \frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 } \right) \\
& = \def\arraystretch{1.5}
\begin{array}{lclc}
& \frac{ 1 }{ 9 m - 3 } &-& \cancel{\frac{ 1 }{ 9 m + 6 }} \\
+ & \cancel{\frac{ 1 }{ 9 m + 6 }} &-& \cancel{\frac{ 1 }{ 9 m + 15 }} \\
+ & \cancel{\frac{ 1 }{ 9 m + 15 }} &-& \cancel{\frac{ 1 }{ 9 m + 24 }} \\
+ & & \cdots & \\
+ & \cancel{\frac{ 1 }{ 27 m - 21 }} &-& \cancel{\frac{ 1 }{ 27 m - 12 }} \\
+ & \cancel{\frac{ 1 }{ 27 m - 12 }} &-& \cancel{\frac{ 1 }{ 27 m - 3 }} \\
+ & \cancel{\frac{ 1 }{ 27 m - 3 }} &-& \frac{ 1 }{ 27 m + 6 } \\
\end{array} \\
&= \frac{ 1 }{ 9 m - 3 } - \frac{ 1 }{ 27 m + 6 } \\
&= \frac{27m+6 - (9m-3)}{9(3m-1)(9m+2)} \\
&= \frac{2m+1}{(3m-1)(9m+2)} \; \blacksquare
\end{align*} r = m ∑ 3 m 9 r 2 + 3 r − 2 1 = r = m ∑ 3 m ( 9 r − 3 1 − 9 r + 6 1 ) = + + + + + + 9 m − 3 1 9 m + 6 1 9 m + 15 1 27 m − 21 1 27 m − 12 1 27 m − 3 1 − − − ⋯ − − − 9 m + 6 1 9 m + 15 1 9 m + 24 1 27 m − 12 1 27 m − 3 1 27 m + 6 1 = 9 m − 3 1 − 27 m + 6 1 = 9 ( 3 m − 1 ) ( 9 m + 2 ) 27 m + 6 − ( 9 m − 3 ) = ( 3 m − 1 ) ( 9 m + 2 ) 2 m + 1 ■
(c) ∑ r = 1 n 1 9 r 2 + 3 r − 2 = ∑ r = 1 n ( 1 9 r − 3 − 1 9 r + 6 ) = 1 6 − 1 15 1 15 − 1 24 + ⋯ + 1 9 n − 12 − 1 9 n − 3 + 1 9 n − 3 − 1 9 n + 6 = 1 6 − 1 9 n + 6 \begin{align*}
& \sum_{r=1}^{n} \frac{1}{9 r^2 + 3 r - 2} \\
& = \sum_{r=1}^{n} \left( \frac{ 1 }{ 9 r - 3 } - \frac{ 1 }{ 9 r + 6 } \right) \\
& = \def\arraystretch{1.5}
\begin{array}{lclc}
& \frac{1}{6} &-& \cancel{\frac{1}{15}} \\
& \cancel{\frac{1}{15}} &-& \cancel{\frac{1}{24}} \\
+ & & \cdots & \\
+ & \cancel{\frac{ 1 }{ 9 n - 12 }} &-& \cancel{\frac{ 1 }{ 9 n - 3 }} \\
+ & \cancel{\frac{ 1 }{ 9 n - 3 }} &-& \frac{ 1 }{ 9 n + 6 } \\
\end{array} \\
&= \frac{1}{6} - \frac{ 1 }{ 9 n + 6 }
\end{align*} r = 1 ∑ n 9 r 2 + 3 r − 2 1 = r = 1 ∑ n ( 9 r − 3 1 − 9 r + 6 1 ) = + + + 6 1 15 1 9 n − 12 1 9 n − 3 1 − − ⋯ − − 15 1 24 1 9 n − 3 1 9 n + 6 1 = 6 1 − 9 n + 6 1
As
n → ∞ , {n \to \infty,} n → ∞ , − 1 9 n + 6 → ∞ . {\frac{ - 1 }{ 9 n + 6 } \to \infty.} 9 n + 6 − 1 → ∞.
∑ r = 1 ∞ 1 9 r 2 + 3 r − 2 = 1 6 ■ \sum_{r=1}^\infty \frac{1}{9 r^2 + 3 r - 2} = \frac{1}{6} \; \blacksquare r = 1 ∑ ∞ 9 r 2 + 3 r − 2 1 = 6 1 ■
(d) ∣ ∑ r = 1 ∞ ( 1 9 r 2 + 3 r − 2 ) − ∑ r = 1 n ( 1 9 r 2 + 3 r − 2 ) ∣ < 0.004 ∣ 1 6 − ( 1 6 − 1 9 n + 6 ) ∣ < 0.004 1 9 n + 6 < 1 250 \begin{gather*}
\left| \sum_{r=1}^\infty \left( \frac{1}{9 r^2 + 3 r - 2} \right) - \sum_{r=1}^n \left( \frac{1}{9 r^2 + 3 r - 2} \right) \right| < 0.004
\\ \left| \frac{1}{6} - \left( \frac{1}{6} - \frac{ 1 }{ 9 n + 6 } \right) \right| < 0.004
\\ \frac{1}{9n+6} < \frac{1}{250}
\end{gather*} r = 1 ∑ ∞ ( 9 r 2 + 3 r − 2 1 ) − r = 1 ∑ n ( 9 r 2 + 3 r − 2 1 ) < 0.004 6 1 − ( 6 1 − 9 n + 6 1 ) < 0.004 9 n + 6 1 < 250 1
Since
9 n + 6 > 0 , {9n+6 > 0,} 9 n + 6 > 0 ,
9 n + 6 > 250 n > 244 9 \begin{align*}
9 n + 6 &> 250
\\ n &> \frac{244}{9}
\end{align*} 9 n + 6 n > 250 > 9 244
Smallest n = 28 ■ \textrm{Smallest } n = 28 \; \blacksquare Smallest n = 28 ■
Question Commentary The method of differences approach via partial fractions came out
again (having appeared in 2021 Paper 1 Question 5
and 2019 Paper 1 Question 6 ).
I find the 1 mark allocated for part (c) interesting though. While not tough as we
just have to do the same method of differences as in part (b) (and it's even easier to
manage with the more common r = 1 {r=1} r = 1 starting index) and then let n {n} n
approach infinity, that seems like quite a bit of work (in the small space provided)
for the 1 mark.
I have tried to look at others' attempt at this but have not found a drastically more elegant
alternative yet.