2022 H2 Mathematics Paper 1 Question 9

Arithmetic and Geometric Progressions (APs, GPs)

Answers

d=52a.{d=\frac{5}{2} a.}
(bi)
k=12.{k=\frac{1}{2}.}
(bii)
431283.\frac{43}{128} \sqrt{3}.

Full solutions

(a)

Let the common ratio of the geometric series be r.{r.}
a=aa+2d=ara+14d=ar2\begin{align} a &= a \\ a + 2d &= ar \\ a + 14d &= ar^2 \end{align}
Taking (2)(1),{(2) - (1),}
2d=ara\begin{equation} 2d = ar -a \end{equation}
Taking (3)(1),{(3) - (1),}
14d=ar2a\begin{equation} 14d = ar^2 -a \end{equation}
Considering (4){(4)} and (5){(5)}
7(ara)=ar2aar27ar+8a=0r27r+6=0(r1)(r6)=0\begin{gather*} 7(ar-a) = ar^2 - a \\ ar^2 - 7ar + 8a = 0 \\ r^2 - 7 r + 6 = 0 \\ (r - 1)(r - 6) = 0 \end{gather*}
Since d0,{d \neq 0,} r1{r \neq 1} so r=6.{r=6.}
Substituting r=6{r=6} into (4),{(4),}
2d=6aad=52a  \begin{align*} 2d &= 6a - a \\ d &= \frac{5}{2} a \; \blacksquare \end{align*}
(bi)
S=sinθ1(cosθ)=sinθ1+cosθ=2sinθ2cosθ21+2cos2θ21=2sinθ2cosθ22cos2θ2=sinθ2cosθ2=tan12θ  \begin{align*} S_\infty &= \frac{\sin \theta}{1-(-\cos \theta)} \\ &= \frac{\sin \theta}{1+\cos \theta} \\ &= \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{1 + 2 \cos^2 \frac{\theta}{2} - 1} \\ &= \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \\ &= \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \\ &= \tan {\textstyle \frac{1}{2}} \theta \; \blacksquare \end{align*}
(bii)
S7=sinπ3(1(cosπ3)7)1(cosπ3)=32(1(12)7)1+12=431283  \begin{align*} S_7 &= \frac{\sin {\textstyle \frac{\pi}{3}} \left( 1 - (-\cos {\textstyle \frac{\pi}{3}})^7 \right)}{1-(-\cos {\textstyle \frac{\pi}{3}})} \\ &= \frac{\frac{\sqrt{3}}{2} \left( 1 - ({\textstyle - \frac{1}{2}} \right)^7 )}{1+\frac{1}{2}} \\ &= \frac{43}{128} \sqrt{3} \; \blacksquare \end{align*}

Question Commentary

Part (a) is a repeat of the rather popular algebraic type of AP/GP question, seen in 2016 paper 1 question 4 and 2007 paper 1 question 10, where we link the two types together. One strategy is to subtract the equations that can be formed to isolate the common difference d,{d,} allowing us to form an equation in r{r} to solve for it.

Meanwhile, part (b) tests the sum to infinity formula with a dash of trigonometry where we will have to use the double angle formula to get the required final form.