2022 H2 Mathematics Paper 1 Question 11

Vectors II: Lines and Planes

Answers

p=36.{p = - 36.}
5x+y+2z=2560.{5 x + y + 2 z = 2560.}
(512,44,22).{\left( 512, 44, - 22 \right).}
1.3{1.3^\circ}

Full solutions

(a)

PQ=OQOP=(2002015)(113692p)=(9367215p)\begin{align*} \overrightarrow{PQ} &= \overrightarrow{OQ} - \overrightarrow{OP} \\ &= \begin{pmatrix} 200 \\ 20 \\ - 15 \end{pmatrix} - \begin{pmatrix} 1136 \\ 92 \\ p \end{pmatrix} \\ &= \begin{pmatrix} - 936 \\ - 72 \\ - 15 - p \end{pmatrix} \end{align*}
PQ=939881505+30p+p2=939881505+30p+p2=881721p2+30p216=0(p+36)(p6)=0p=36 or p=6\begin{gather*} \left| \overrightarrow{PQ} \right| = 939 \\ \sqrt{881505 + 30 p + p^2} = 939 \\ 881505 + 30 p + p^2 = 881721 \\ p^2 + 30 p - 216 = 0 \\ (p + 36)(p - 6) = 0 \\ p = - 36 \quad \textrm{ or } \quad p = 6 \end{gather*}
Since P{P} is below Q,{Q,} p=36.  {p=- 36. \; \blacksquare}

(b)

d1=(50020070)(40060020)=(10040050)=50(281)d2=(60034050)(40060020)=(20094030)=10(20943)n=(281)×(20943)=(701428)=14(512)\begin{align*} \mathbf{d_1} &= \begin{pmatrix} 500 \\ 200 \\ - 70 \end{pmatrix} - \begin{pmatrix} 400 \\ 600 \\ - 20 \end{pmatrix} \\ &= \begin{pmatrix} 100 \\ - 400 \\ - 50 \end{pmatrix} \\ &= 50 \begin{pmatrix} 2 \\ - 8 \\ - 1 \end{pmatrix} \\ \mathbf{d_2} &= \begin{pmatrix} 600 \\ - 340 \\ - 50 \end{pmatrix} - \begin{pmatrix} 400 \\ 600 \\ - 20 \end{pmatrix} \\ &= \begin{pmatrix} 200 \\ - 940 \\ - 30 \end{pmatrix} \\ &= 10 \begin{pmatrix} 20 \\ - 94 \\ - 3 \end{pmatrix} \\ \mathbf{n'} &= \begin{pmatrix} 2 \\ - 8 \\ - 1 \end{pmatrix} \times \begin{pmatrix} 20 \\ - 94 \\ - 3 \end{pmatrix} \\ &= \begin{pmatrix} - 70 \\ - 14 \\ - 28 \end{pmatrix} \\ &= - 14 \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} \end{align*}
rn=anr(512)=(40060020)(512)r(512)=2560\begin{align*} \mathbf{r}\cdot\mathbf{n} &= \mathbf{a} \cdot \mathbf{n} \\ \mathbf{r} \cdot \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} &= \begin{pmatrix} 400 \\ 600 \\ - 20 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} \\ \mathbf{r} \cdot \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} &= 2560 \end{align*}
Cartesian equation of plane is
5x+y+2z=2560  5 x + y + 2 z = 2560 \; \blacksquare

(c)

PQ=(11369215(36))=(9367221)=3(312247)\begin{align*} \overrightarrow{PQ} &= \begin{pmatrix} 1136 \\ 92 \\ -15-(- 36) \end{pmatrix} \\ &= \begin{pmatrix} - 936 \\ - 72 \\ 21 \end{pmatrix} \\ &= 3 \begin{pmatrix} - 312 \\ - 24 \\ 7 \end{pmatrix} \end{align*}
lPQ:r=(11369236)+λ(312247)l_{PQ}: \mathbf{r} = \begin{pmatrix} 1136 \\ 92 \\ - 36 \end{pmatrix} + \lambda \begin{pmatrix} - 312 \\ - 24 \\ 7 \end{pmatrix}
Substituting equation of l{l} into equation of plane,
(1136312λ9224λ36+7λ)(512)=25605(1136312λ)+(9224λ)+2(36+7λ)=2560λ=2\begin{gather*} \begin{pmatrix} 1136 - 312 \lambda \\ 92 - 24 \lambda \\ - 36 + 7 \lambda \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} = 2560 \\ 5(1136 - 312 \lambda) + (92 - 24 \lambda) + 2(- 36 + 7 \lambda) = 2560 \\ \lambda = 2 \end{gather*}
Let X{X} denote the point of intersection.
Substituting λ=2{\lambda = 2} into equation of line,
OX=(11369236)+2(312247)=(5124422)\begin{align*} \overrightarrow{OX} &= \begin{pmatrix} 1136 \\ 92 \\ - 36 \end{pmatrix} + 2 \begin{pmatrix} - 312 \\ - 24 \\ 7 \end{pmatrix} \\ &= \begin{pmatrix} 512 \\ 44 \\ - 22 \end{pmatrix} \end{align*}
Hence the coordinates of the point where the pipeline meets the rock is (512,44,22)  {\left( 512, 44, - 22 \right) \; \blacksquare}

(d)

The horizontal can be modelled as a plane with normal vector (001){\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}
Let θ{\theta} denote the angle between the pipeline and the horizontal
sinθ=dndn=(312247)(001)(312247)(001)=797969θ=1.3 (1 dp)  \begin{align*} \sin \theta &= \frac{\left| \mathbf{d} \cdot \mathbf{n} \right|}{\left| \mathbf{d} \right|\left| \mathbf{n} \right|} \\ &= \frac{\left| \begin{pmatrix} - 312 \\ - 24 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right|}{\left| \begin{pmatrix} - 312 \\ - 24 \\ 7 \end{pmatrix} \right|\left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right|} \\ &= \frac{7}{\sqrt{97969}} \\ \theta &= 1.3^\circ \textrm{ (1 dp)} \; \blacksquare \end{align*}

Question Commentary

Like in 2019 paper 1 question 12, 2018 paper 2 question 3 and many others, this vectors question is set in a real world context. The trick will then be to translate the information provided into the vectors/lines/planes concepts that we learn in the syllabus.

For part (a), the length comes from the concept of vector magnitude. Part (b) involves finding the normal vector of the plane by taking a cross/vector product. Part (c) involves finding the point of intersection between a line (the pipeline) and a plane (the rock).

Finally, part (d) involves finding the angle between a line/vector and a plane. This part could be tricky as it may not be immediately clear what the horizontal refers to, but it is the plane with the z{z}-axis as its normal vector. Also be careful that the angle between a line/vector and a plane needs some modification (eg by using sine) from our usual cosine dot product formula.