2021 H2 Mathematics Paper 1 Question 1

Equations and Inequalities

Answers

a=4,  {a=4,\;}b=6,  {b=- 6,\;}c=0,  {c=0,\;}d=7,  {d=7,\;}

Full solutions

y=ax3+bx2+cx+dy=ax^3+bx^2+cx+d
Since the curve passes through (1,5){(1,5)} and (1,3){(-1,-3)},
a+b+c+d=5a+bc+d=3\begin{align} && \quad a + b + c + d &= 5 \\ && \quad -a + b - c + d &= -3 \\ \end{align}
dydx=3ax2+2bx+c\frac{\mathrm{d}y}{\mathrm{d}x}=3ax^2+2bx+c
Since the graph has a turning point at x=1,{x=1,}
3a+2b+c=0\begin{equation}3a+2b+c=0\end{equation}
01f(x)  dx=6[ax44+bx33+cx22+dx]01=6\begin{gather*} \int_0^1 f(x) \; \mathrm{d}x = 6 \\ \left[ \frac{ax^4}{4} + \frac{bx^3}{3} + \frac{cx^2}{2} + dx \right]_0^1 = 6 \end{gather*}
14a+13b+12c+d=6\begin{equation}\qquad \frac{1}{4}a+\frac{1}{3}b+\frac{1}{2}c+d=6\end{equation}
Solving (1),(2),(3){(1), (2), (3)} and (4){(4)} with a GC,
a=4  b=6  c=0  d=7  \begin{align*} &a = 4 \; \blacksquare \\ &b = - 6 \; \blacksquare \\ &c = 0 \; \blacksquare \\ &d = 7 \; \blacksquare \\ \end{align*}