f′(x)=excosx−exsinx=ex(cosx−sinx) At stationary point,
f′(x)=0ex(cosx−sinx)=0cosx−sinx=0sinx=cosxtanx=1x=4π f′(x)f′′(x)=f(x)−exsinx=f′(x)−exsinx−excosx f(4π)f′′(4π)=e4πcos4π=22e4π=0−e4π22−e4π22=−2e4π<0 Hence the stationary point is
(4π,22e4π)■ and it is a
maximum point
■