Math Repository
about
topic
al
year
ly
Yearly
2021
P2 Q6
Topical
DRV
21 P2 Q6
2021 H2 Mathematics Paper 2 Question 6
Discrete Random Variables (DRVs)
Answers
2.7
{2.7}
2.7
Full solutions
∑
P
(
X
=
x
)
=
1
0.2
+
0.3
+
p
+
p
+
q
=
1
\begin{align*} \sum P(X=x) &= 1 \\ 0.2+0.3+p+p+q &= 1 \end{align*}
∑
P
(
X
=
x
)
0.2
+
0.3
+
p
+
p
+
q
=
1
=
1
q
=
0.5
−
2
p
\begin{equation} q = 0.5 - 2p \end{equation}
q
=
0.5
−
2
p
E
(
X
)
=
∑
x
x
P
(
X
=
x
)
=
0.2
+
0.6
+
3
p
+
4
p
+
5
q
=
0.8
+
7
p
+
5
q
\begin{align*} \mathrm{E}(X) &= \sum_x x \mathrm{P}(X=x) \\ &= 0.2+0.6+3p+4p+5q \\ &= 0.8 + 7p + 5q \end{align*}
E
(
X
)
=
x
∑
x
P
(
X
=
x
)
=
0.2
+
0.6
+
3
p
+
4
p
+
5
q
=
0.8
+
7
p
+
5
q
E
(
X
2
)
=
∑
x
x
2
P
(
X
=
x
)
=
0.2
+
4
(
0.3
)
+
9
p
+
16
p
+
25
q
=
1.4
+
25
p
+
25
q
\begin{align*} \mathrm{E}(X^2) &= \sum_x x^2 \mathrm{P}(X=x) \\ &= 0.2+4(0.3)+9p+16p+25q \\ &= 1.4 + 25p + 25q \\ \end{align*}
E
(
X
2
)
=
x
∑
x
2
P
(
X
=
x
)
=
0.2
+
4
(
0.3
)
+
9
p
+
16
p
+
25
q
=
1.4
+
25
p
+
25
q
V
a
r
(
X
)
=
1.61
E
(
X
2
)
−
(
E
(
X
)
)
2
=
1.61
1.4
+
25
p
+
25
q
−
(
0.8
+
7
p
+
5
q
)
2
=
1.61
\begin{gather*} \mathrm{Var}(X) = 1.61 \\ \mathrm{E}(X^2) - \left(\mathrm{E}(X)\right)^2 = 1.61 \\ 1.4 + 25p + 25q - (0.8 + 7p + 5q)^2 = 1.61 \\ \end{gather*}
Var
(
X
)
=
1.61
E
(
X
2
)
−
(
E
(
X
)
)
2
=
1.61
1.4
+
25
p
+
25
q
−
(
0.8
+
7
p
+
5
q
)
2
=
1.61
Substituting
(
1
)
,
{(1),}
(
1
)
,
1.4
+
25
p
+
25
(
0.5
−
2
p
)
−
(
0.8
+
7
p
+
5
(
0.5
−
2
p
)
)
2
=
1.61
1.4 + 25p + 25(0.5-2p) - (0.8+7p+5(0.5-2p))^2 = 1.61
1.4
+
25
p
+
25
(
0.5
−
2
p
)
−
(
0.8
+
7
p
+
5
(
0.5
−
2
p
)
)
2
=
1.61
Solving with a GC,
p
=
0.2
p=0.2
p
=
0.2
q
=
0.5
−
2
p
=
0.1
\begin{align*} q &= 0.5 - 2p \\ &= 0.1 \end{align*}
q
=
0.5
−
2
p
=
0.1
Mean score
=
0.8
+
7
p
+
5
q
=
2.7
■
\begin{align*} &\textrm{Mean score}\\ &= 0.8+7p+5q\\ &= 2.7\;\blacksquare \end{align*}
Mean score
=
0.8
+
7
p
+
5
q
=
2.7
■
Back to top ▲