2021 H2 Mathematics Paper 1 Question 8

Vectors II: Lines and Planes

Answers

x2z=3{x - 2 z = 3}
(ci)
λ=1,μ=1{\lambda = -1, \mu = 1}
(151),(331){\begin{pmatrix} 1 \\ 5 \\ - 1 \end{pmatrix}, \begin{pmatrix} - 3 \\ 3 \\ 1 \end{pmatrix}}
(cii)
26 units{2 \sqrt{6} \textrm{ units}}

Full solutions

(a)

Let A(3,2,0){A (3,2,0)} be a point on l1{l_1} and B=(1,3,1){B = (1,-3,-1)}
AB=OBOA=(251)\begin{align*} \overrightarrow{AB} &= \overrightarrow{OB} - \overrightarrow{OA} \\ &= \begin{pmatrix} - 2 \\ - 5 \\ - 1 \end{pmatrix} \end{align*}
n=(231)×(251)=(8016)n=(102)\begin{align*} \mathbf{n'} &= \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} - 2 \\ - 5 \\ - 1 \end{pmatrix} \\ &= \begin{pmatrix} 8 \\ 0 \\ - 16 \end{pmatrix} \\ \mathbf{n} &= \begin{pmatrix} 1 \\ 0 \\ - 2 \end{pmatrix} \end{align*}
rn=an=(320)(102)=3\begin{align*} \mathbf{r} \cdot \mathbf{n} &= \mathbf{a} \cdot \mathbf{n} \\ &= \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ - 2 \end{pmatrix} \\ &= 3 \end{align*}
Cartesian equation of plane: x2z=3  {x-2z=3 \; \blacksquare}

(b)

d1d2=(231)(124)=26+4=0\begin{align*} \mathbf{d_1} \cdot \mathbf{d_2} &= \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \\ &= 2 - 6 + 4 \\ &= 0 \end{align*}
Hence the direction vectors of l1{l_1} and l2{l_2} are perpendicular.
Hence l1{l_1} is perpendicular to d2{d_2}. {\blacksquare}
(ci)
r1r2=(7+2λμ13λ2μ3+λ4μ)\mathbf{r_1}-\mathbf{r_2}= \begin{pmatrix} 7 + 2 \lambda - \mu \\ 1 - 3 \lambda - 2 \mu \\ 3 + \lambda - 4 \mu \end{pmatrix}
(r1r2)d1=0(7+2λμ13λ2μ3+λ4μ)(231)=014λ=14λ=1  \begin{gather*} (\mathbf{r_1} - \mathbf{r_2}) \cdot \mathbf{d_1} = 0 \\ \begin{pmatrix} 7 + 2 \lambda - \mu \\ 1 - 3 \lambda - 2 \mu \\ 3 + \lambda - 4 \mu \end{pmatrix} \cdot \begin{pmatrix} 2 \\ - 3 \\ 1 \end{pmatrix} = 0 \\ 14 \lambda = -14 \\ \lambda = -1 \; \blacksquare \end{gather*}
(r1r2)d2=0(7+2λμ13λ2μ3+λ4μ)(124)=021μ=21μ=1  \begin{gather*} (\mathbf{r_1} - \mathbf{r_2}) \cdot \mathbf{d_2} = 0 \\ \begin{pmatrix} 7 + 2 \lambda - \mu \\ 1 - 3 \lambda - 2 \mu \\ 3 + \lambda - 4 \mu \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = 0 \\ - 21 \mu = -21 \\ \mu = 1 \; \blacksquare \end{gather*}
When λ=1,r1=(151){\lambda = -1, \mathbf{r_1} = \begin{pmatrix} 1 \\ 5 \\ - 1 \end{pmatrix}}
When μ=1,r2=(331){\mu = 1, \mathbf{r_2} = \begin{pmatrix} - 3 \\ 3 \\ 1 \end{pmatrix}}
Hence the common perpendicular meets l1{l_1} and l2{l_2} at points with position vectors (151){\begin{pmatrix} 1 \\ 5 \\ - 1 \end{pmatrix}} and (331)  {\begin{pmatrix} - 3 \\ 3 \\ 1 \end{pmatrix} \; \blacksquare}
(cii)
Length of perpendicular =(151)(331)=(422)=26 units  \begin{align*} & \textrm{Length of perpendicular } \\ &= \left|\begin{pmatrix} 1 \\ 5 \\ - 1 \end{pmatrix} - \begin{pmatrix} - 3 \\ 3 \\ 1 \end{pmatrix} \right| \\ &= \left|\begin{pmatrix} 4 \\ 2 \\ - 2 \end{pmatrix} \right| \\ &= 2 \sqrt{6} \textrm{ units} \; \blacksquare \end{align*}