2021 H2 Mathematics Paper 1 Question 6

Graphs and Transformations

Answers

Smallest y=12a{y = \frac{1}{2a}}
Translation of 2a{2a} units in the negative x-{x\textrm{-}}axis direction

Full solutions

(a)

(b)

4axx2=(x24ax)=((x2a)24a2)=(x2a)2+4a2\begin{align*} & 4ax - x^2 \\ & = - (x^2 - 4ax) \\ & = - \Big((x-2a)^2 - 4a^2 \Big) \\ &= -(x-2a)^2 + 4a^2 \end{align*}
Hence the maximum value of 4axx2{4ax - x^2} is 4a2{4a^2}
Smallest possible value of y=14a2=12a  \begin{align*} & \textrm{Smallest possible value of } y \\ & = \frac{1}{\sqrt{4a^2}} \\ & = \frac{1}{2a} \; \blacksquare \end{align*}

(c)

Equation of C:{C:}
y=14a2(x2a)2y = \frac{1}{\sqrt{4a^2-(x-2a)^2}}
Hence a translation of 2a{2a} units in the negative x-{x\textrm{-}}axis direction maps the graph of C{C} onto the graph of y=14a2x2  {y=\frac{1}{4a^2-x^2} \; \blacksquare}