2021 H2 Mathematics Paper 2 Question 5
Integration Techniques
Answers
51tan5x−x+C 21sinb−101sin5b lnlnalnb −4(1+e2x)21+C′ Full solutions
(a)
∫tan25xdx=∫sec25x−1dx=51tan5x−x+C■ (b)
∫0bsin2xsin3xdx=−21∫0bcos5x−cosxdx=−21[51sin5x−sinx]0b=21sinb−101sin5b■ (c)
∫abxlnx1dx=∫ablnxx1dx=[ln∣lnx∣]ab=lnlnb−lnlna=lnlnalnb■ (d)
dxdu=2e2x ∫(1+e2x)3e2xdx=∫u3e2x2e2x1du=21∫u31du=−4u21+C′=−4(1+e2x)21+C′■